Fine-Grained Privacy Extraction from Retrieval-Augmented Generation Systems via Knowledge Asymmetry Exploitation
- URL: http://arxiv.org/abs/2507.23229v1
- Date: Thu, 31 Jul 2025 03:50:16 GMT
- Title: Fine-Grained Privacy Extraction from Retrieval-Augmented Generation Systems via Knowledge Asymmetry Exploitation
- Authors: Yufei Chen, Yao Wang, Haibin Zhang, Tao Gu,
- Abstract summary: Retrieval-augmented generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge bases.<n>Existing privacy attacks on RAG systems can trigger data leakage but often fail to accurately isolate knowledge-base-derived sentences within mixed responses.<n>This paper presents a novel black-box attack framework that exploits knowledge asymmetry between RAG and standard LLMs to achieve fine-grained privacy extraction.
- Score: 15.985529058573912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) systems enhance large language models (LLMs) by integrating external knowledge bases, but this advancement introduces significant privacy risks. Existing privacy attacks on RAG systems can trigger data leakage but often fail to accurately isolate knowledge-base-derived sentences within mixed responses. They also lack robustness when applied across multiple domains. This paper addresses these challenges by presenting a novel black-box attack framework that exploits knowledge asymmetry between RAG and standard LLMs to achieve fine-grained privacy extraction across heterogeneous knowledge landscapes. We propose a chain-of-thought reasoning strategy that creates adaptive prompts to steer RAG systems away from sensitive content. Specifically, we first decompose adversarial queries to maximize information disparity and then apply a semantic relationship scoring to resolve lexical and syntactic ambiguities. We finally train a neural network on these feature scores to precisely identify sentences containing private information. Unlike prior work, our framework generalizes to unseen domains through iterative refinement without pre-defined knowledge. Experimental results show that we achieve over 91% privacy extraction rate in single-domain and 83% in multi-domain scenarios, reducing sensitive sentence exposure by over 65% in case studies. This work bridges the gap between attack and defense in RAG systems, enabling precise extraction of private information while providing a foundation for adaptive mitigation.
Related papers
- Privacy-Aware Decoding: Mitigating Privacy Leakage of Large Language Models in Retrieval-Augmented Generation [26.573578326262307]
Privacy-Aware Decoding (PAD) is a lightweight, inference-time defense that adaptively injects calibrated Gaussian noise into token logits during generation.<n>PAD integrates confidence-based screening to selectively protect high-risk tokens, efficient sensitivity estimation to minimize unnecessary noise, and context-aware noise calibration to balance privacy with generation quality.<n>Our work takes an important step toward mitigating privacy risks in RAG via decoding strategies, paving the way for universal and scalable privacy solutions in sensitive domains.
arXiv Detail & Related papers (2025-08-05T05:22:13Z) - Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - Silent Leaks: Implicit Knowledge Extraction Attack on RAG Systems through Benign Queries [27.665853244467463]
We introduce Implicit Knowledge Extraction Attack (IKEA), which conducts knowledge extraction on RAG systems through benign queries.<n>IKEA first leverages anchor concepts to generate queries with the natural appearance, and then designs two mechanisms to lead to anchor concept thoroughly 'explore' the RAG's privacy knowledge.<n>Experiments demonstrate IKEA's effectiveness under various defenses, surpassing baselines by over 80% in extraction efficiency and 90% in attack success rate.
arXiv Detail & Related papers (2025-05-21T12:04:42Z) - Beyond Text: Unveiling Privacy Vulnerabilities in Multi-modal Retrieval-Augmented Generation [17.859942323017133]
We provide the first systematic analysis of MRAG privacy vulnerabilities across vision-language and speech-language modalities.<n>Our experiments reveal that LMMs can both directly generate outputs resembling retrieved content and produce descriptions that indirectly expose sensitive information.
arXiv Detail & Related papers (2025-05-20T05:37:22Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)<n>FedE4RAG facilitates collaborative training of client-side RAG retrieval models.<n>We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - Pirates of the RAG: Adaptively Attacking LLMs to Leak Knowledge Bases [11.101624331624933]
This paper presents a black-box attack to force a RAG system to leak its private knowledge base.<n>A relevance-based mechanism and an attacker-side open-source LLM favor the generation of effective queries to leak most of the (hidden) knowledge base.
arXiv Detail & Related papers (2024-12-24T09:03:57Z) - RAG-Thief: Scalable Extraction of Private Data from Retrieval-Augmented Generation Applications with Agent-based Attacks [18.576435409729655]
We propose an agent-based automated privacy attack called RAG-Thief.
It can extract a scalable amount of private data from the private database used in RAG applications.
Our findings highlight the privacy vulnerabilities in current RAG applications and underscore the pressing need for stronger safeguards.
arXiv Detail & Related papers (2024-11-21T13:18:03Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs)
In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases.
arXiv Detail & Related papers (2024-06-26T05:36:23Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
We propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process.<n>We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness.<n>We present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space.
arXiv Detail & Related papers (2024-06-20T15:12:27Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented generation (RAG) is a powerful technique to facilitate language model with proprietary and private data.
In this work, we conduct empirical studies with novel attack methods, which demonstrate the vulnerability of RAG systems on leaking the private retrieval database.
arXiv Detail & Related papers (2024-02-23T18:35:15Z) - PoisonedRAG: Knowledge Corruption Attacks to Retrieval-Augmented Generation of Large Language Models [45.409248316497674]
Large language models (LLMs) have achieved remarkable success due to their exceptional generative capabilities.
Retrieval-Augmented Generation (RAG) is a state-of-the-art technique to mitigate these limitations.
We find that the knowledge database in a RAG system introduces a new and practical attack surface.
Based on this attack surface, we propose PoisonedRAG, the first knowledge corruption attack to RAG.
arXiv Detail & Related papers (2024-02-12T18:28:36Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
We prove a privacy bound for the KL divergence between model distributions on worst-case neighboring datasets.
We find that this KL privacy bound is largely determined by the expected squared gradient norm relative to model parameters during training.
arXiv Detail & Related papers (2023-10-31T16:13:22Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.