Pseudo-Label Guided Real-World Image De-weathering: A Learning Framework with Imperfect Supervision
- URL: http://arxiv.org/abs/2504.09949v1
- Date: Mon, 14 Apr 2025 07:24:03 GMT
- Title: Pseudo-Label Guided Real-World Image De-weathering: A Learning Framework with Imperfect Supervision
- Authors: Heming Xu, Xiaohui Liu, Zhilu Zhang, Hongzhi Zhang, Xiaohe Wu, Wangmeng Zuo,
- Abstract summary: We propose a unified solution for real-world image de-weathering with non-ideal supervision.<n>Our method exhibits significant advantages when trained on imperfectly aligned de-weathering datasets.
- Score: 57.5699142476311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world image de-weathering aims at removingvarious undesirable weather-related artifacts, e.g., rain, snow,and fog. To this end, acquiring ideal training pairs is crucial.Existing real-world datasets are typically constructed paired databy extracting clean and degraded images from live streamsof landscape scene on the Internet. Despite the use of strictfiltering mechanisms during collection, training pairs inevitablyencounter inconsistency in terms of lighting, object position, scenedetails, etc, making de-weathering models possibly suffer fromdeformation artifacts under non-ideal supervision. In this work,we propose a unified solution for real-world image de-weatheringwith non-ideal supervision, i.e., a pseudo-label guided learningframework, to address various inconsistencies within the realworld paired dataset. Generally, it consists of a de-weatheringmodel (De-W) and a Consistent Label Constructor (CLC), bywhich restoration result can be adaptively supervised by originalground-truth image to recover sharp textures while maintainingconsistency with the degraded inputs in non-weather contentthrough the supervision of pseudo-labels. Particularly, a Crossframe Similarity Aggregation (CSA) module is deployed withinCLC to enhance the quality of pseudo-labels by exploring thepotential complementary information of multi-frames throughgraph model. Moreover, we introduce an Information AllocationStrategy (IAS) to integrate the original ground-truth imagesand pseudo-labels, thereby facilitating the joint supervision forthe training of de-weathering model. Extensive experimentsdemonstrate that our method exhibits significant advantageswhen trained on imperfectly aligned de-weathering datasets incomparison with other approaches.
Related papers
- WTCL-Dehaze: Rethinking Real-world Image Dehazing via Wavelet Transform and Contrastive Learning [17.129068060454255]
Single image dehazing is essential for applications such as autonomous driving and surveillance.
We propose an enhanced semi-supervised dehazing network that integrates Contrastive Loss and Discrete Wavelet Transform.
Our proposed algorithm achieves superior performance and improved robustness compared to state-of-the-art single image dehazing methods.
arXiv Detail & Related papers (2024-10-07T05:36:11Z) - SemiDDM-Weather: A Semi-supervised Learning Framework for All-in-one Adverse Weather Removal [57.52777076116241]
Adverse weather removal aims to restore clear vision under adverse weather conditions.
This paper presents a pioneering semi-supervised all-in-one adverse weather removal framework built on the teacher-student network.
arXiv Detail & Related papers (2024-09-29T12:12:22Z) - Learning Real-World Image De-Weathering with Imperfect Supervision [57.748585821252824]
Existing real-world de-weathering datasets often exhibit inconsistent illumination, position, and textures between the ground-truth images and the input degraded images.
We develop a Consistent Label Constructor (CLC) to generate a pseudo-label as consistent as possible with the input degraded image.
We combine the original imperfect labels and pseudo-labels to jointly supervise the de-weathering model by the proposed Information Allocation Strategy.
arXiv Detail & Related papers (2023-10-23T14:02:57Z) - Video Shadow Detection via Spatio-Temporal Interpolation Consistency
Training [31.115226660100294]
We propose a framework to feed the unlabeled video frames together with the labeled images into an image shadow detection network training.
We then derive the spatial and temporal consistency constraints accordingly for enhancing generalization in the pixel-wise classification.
In addition, we design a Scale-Aware Network for multi-scale shadow knowledge learning in images.
arXiv Detail & Related papers (2022-06-17T14:29:51Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Enhancing Low-Light Images in Real World via Cross-Image Disentanglement [58.754943762945864]
We propose a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions.
Our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.
arXiv Detail & Related papers (2022-01-10T03:12:52Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.