Correlative and Discriminative Label Grouping for Multi-Label Visual Prompt Tuning
- URL: http://arxiv.org/abs/2504.09990v1
- Date: Mon, 14 Apr 2025 08:52:50 GMT
- Title: Correlative and Discriminative Label Grouping for Multi-Label Visual Prompt Tuning
- Authors: LeiLei Ma, Shuo Xu, MingKun Xie, Lei Wang, Dengdi Sun, Haifeng Zhao,
- Abstract summary: Recent studies have overemphasized co-occurrence relationships among labels, leading to suboptimal models.<n>We propose the Multi-Label Visual Prompt Tuning framework to balance correlative and discriminative relationships among labels.<n>Our proposed approach achieves competitive results and outperforms SOTA methods on multiple pre-trained models.
- Score: 12.052388861361937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling label correlations has always played a pivotal role in multi-label image classification (MLC), attracting significant attention from researchers. However, recent studies have overemphasized co-occurrence relationships among labels, which can lead to overfitting risk on this overemphasis, resulting in suboptimal models. To tackle this problem, we advocate for balancing correlative and discriminative relationships among labels to mitigate the risk of overfitting and enhance model performance. To this end, we propose the Multi-Label Visual Prompt Tuning framework, a novel and parameter-efficient method that groups classes into multiple class subsets according to label co-occurrence and mutual exclusivity relationships, and then models them respectively to balance the two relationships. In this work, since each group contains multiple classes, multiple prompt tokens are adopted within Vision Transformer (ViT) to capture the correlation or discriminative label relationship within each group, and effectively learn correlation or discriminative representations for class subsets. On the other hand, each group contains multiple group-aware visual representations that may correspond to multiple classes, and the mixture of experts (MoE) model can cleverly assign them from the group-aware to the label-aware, adaptively obtaining label-aware representation, which is more conducive to classification. Experiments on multiple benchmark datasets show that our proposed approach achieves competitive results and outperforms SOTA methods on multiple pre-trained models.
Related papers
- Label Cluster Chains for Multi-Label Classification [2.072831155509228]
Multi-label classification is a type of supervised machine learning that can simultaneously assign multiple labels to an instance.
We propose a method to chain disjoint correlated label clusters obtained by applying a partition method in the label space.
Our proposal shows that learning and chaining disjoint correlated label clusters can better explore and learn label correlations.
arXiv Detail & Related papers (2024-11-01T11:16:37Z) - Dynamic Correlation Learning and Regularization for Multi-Label Confidence Calibration [60.95748658638956]
This paper introduces the Multi-Label Confidence task, aiming to provide well-calibrated confidence scores in multi-label scenarios.
Existing single-label calibration methods fail to account for category correlations, which are crucial for addressing semantic confusion.
We propose the Dynamic Correlation Learning and Regularization algorithm, which leverages multi-grained semantic correlations to better model semantic confusion.
arXiv Detail & Related papers (2024-07-09T13:26:21Z) - Self Supervised Correlation-based Permutations for Multi-View Clustering [7.972599673048582]
We propose an end-to-end deep learning-based MVC framework for general data.
Our approach involves learning meaningful fused data representations with a novel permutation-based canonical correlation objective.
We demonstrate the effectiveness of our model using ten MVC benchmark datasets.
arXiv Detail & Related papers (2024-02-26T08:08:30Z) - Reliable Representation Learning for Incomplete Multi-View Missing Multi-Label Classification [78.15629210659516]
In this paper, we propose an incomplete multi-view missing multi-label classification network named RANK.<n>We break through the view-level weights inherent in existing methods and propose a quality-aware sub-network to dynamically assign quality scores to each view of each sample.<n>Our model is not only able to handle complete multi-view multi-label data, but also works on datasets with missing instances and labels.
arXiv Detail & Related papers (2023-03-30T03:09:25Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Enhancing Label Correlation Feedback in Multi-Label Text Classification
via Multi-Task Learning [6.1538971100140145]
We introduce a novel approach with multi-task learning to enhance label correlation feedback.
We propose two auxiliary label co-occurrence prediction tasks to enhance label correlation learning.
arXiv Detail & Related papers (2021-06-06T12:26:14Z) - Group-aware Label Transfer for Domain Adaptive Person Re-identification [179.816105255584]
Unsupervised Adaptive Domain (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations.
Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion.
We propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning.
arXiv Detail & Related papers (2021-03-23T07:57:39Z) - Evolving Multi-label Classification Rules by Exploiting High-order Label
Correlation [2.9822184411723645]
In multi-label classification tasks, each problem instance is associated with multiple classes simultaneously.
The correlation between labels can be exploited at different levels such as capturing the pair-wise correlation or exploiting the higher-order correlations.
This paper aims at exploiting the high-order label correlation within subsets of labels using a supervised learning classifier system.
arXiv Detail & Related papers (2020-07-22T18:13:12Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
We present an elegant and effective approach for addressing limitations in existing multi-label classification models.
By performing soft n-gram interaction matching, we match labels with natural language descriptions.
arXiv Detail & Related papers (2020-05-18T15:27:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.