論文の概要: AimTS: Augmented Series and Image Contrastive Learning for Time Series Classification
- arxiv url: http://arxiv.org/abs/2504.09993v1
- Date: Mon, 14 Apr 2025 08:55:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-22 22:39:02.975596
- Title: AimTS: Augmented Series and Image Contrastive Learning for Time Series Classification
- Title(参考訳): AimTS: 時系列分類のための拡張系列と画像コントラスト学習
- Authors: Yuxuan Chen, Shanshan Huang, Yunyao Cheng, Peng Chen, Zhongwen Rao, Yang Shu, Bin Yang, Lujia Pan, Chenjuan Guo,
- Abstract要約: 時系列分類(TSC)は時系列解析において重要な課題である。
AimTSは、マルチソース時系列データから一般化可能な表現を学ぶための事前トレーニングフレームワークである。
- 参考スコア(独自算出の注目度): 19.7216139977931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series classification (TSC) is an important task in time series analysis. Existing TSC methods mainly train on each single domain separately, suffering from a degradation in accuracy when the samples for training are insufficient in certain domains. The pre-training and fine-tuning paradigm provides a promising direction for solving this problem. However, time series from different domains are substantially divergent, which challenges the effective pre-training on multi-source data and the generalization ability of pre-trained models. To handle this issue, we introduce Augmented Series and Image Contrastive Learning for Time Series Classification (AimTS), a pre-training framework that learns generalizable representations from multi-source time series data. We propose a two-level prototype-based contrastive learning method to effectively utilize various augmentations in multi-source pre-training, which learns representations for TSC that can be generalized to different domains. In addition, considering augmentations within the single time series modality are insufficient to fully address classification problems with distribution shift, we introduce the image modality to supplement structural information and establish a series-image contrastive learning to improve the generalization of the learned representations for TSC tasks. Extensive experiments show that after multi-source pre-training, AimTS achieves good generalization performance, enabling efficient learning and even few-shot learning on various downstream TSC datasets.
- Abstract(参考訳): 時系列分類(TSC)は時系列解析において重要な課題である。
既存のTSC法は主に個々のドメインで個別にトレーニングし、特定のドメインでトレーニング用サンプルが不十分な場合の精度の低下に悩まされる。
事前学習と微調整のパラダイムは、この問題を解決するための有望な方向性を提供する。
しかし、異なる領域からの時系列はかなりばらつきがあり、マルチソースデータに対する効果的な事前学習と事前学習モデルの一般化能力に挑戦する。
この問題を解決するために,マルチソース時系列データから一般化可能な表現を学習する事前学習フレームワークであるAimTS(Augmented Series and Image Contrastive Learning for Time Series Classification)を導入する。
本稿では,異なる領域に一般化可能なTSCの表現を学習するマルチソース事前学習において,様々な拡張を効果的に活用する2段階のプロトタイプベースコントラスト学習手法を提案する。
さらに, 分散シフトに伴う分類問題を完全に解決するには, 単一時系列のモダリティの増大が不十分であることを考慮し, 構造情報を補うイメージモダリティを導入し, TSCタスクの学習表現の一般化を改善するために, 時系列のコントラスト学習を確立する。
大規模な実験では、マルチソースの事前トレーニングの後、AimTSは優れた一般化性能を達成し、様々な下流TSCデータセット上で効率的な学習と数ショットの学習を可能にした。
関連論文リスト
- TimesBERT: A BERT-Style Foundation Model for Time Series Understanding [72.64824086839631]
GPTスタイルのモデルは時系列予測の基礎モデルとして位置づけられている。
BERTスタイルのアーキテクチャは時系列理解のために完全にアンロックされていない。
時系列の汎用表現を学ぶために TimesBERT を設計する。
私たちのモデルは、さまざまなドメインにまたがる2600億のタイムポイントで事前トレーニングされています。
論文 参考訳(メタデータ) (2025-02-28T17:14:44Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
周波数領域で異なる時間粒度(または対応する周波数分解能)の時系列が異なる結合分布を示すことを示す。
時間領域と周波数領域の両方からタイムアウェア表現を学習するために,新しいFourierナレッジアテンション機構を提案する。
自己回帰的空白埋め込み事前学習フレームワークを時系列解析に初めて組み込み、生成タスクに依存しない事前学習戦略を実現する。
論文 参考訳(メタデータ) (2025-02-05T15:20:04Z) - MuSiCNet: A Gradual Coarse-to-Fine Framework for Irregularly Sampled Multivariate Time Series Analysis [45.34420094525063]
我々は、不規則性は本質的にある意味で相対的であるという新しい視点を導入する。
MuSiCNetは、3つのメインストリームタスクでSOTAと一貫して競合するISMTS分析フレームワークである。
論文 参考訳(メタデータ) (2024-12-02T02:50:01Z) - Towards Generalisable Time Series Understanding Across Domains [10.350643783811174]
時系列の不均一性を扱うために特別に設計された新しい事前学習パラダイムを導入する。
本稿では、学習可能なドメインシグネチャ、二重マスキング戦略、正規化相互相関損失を持つトークンサを提案する。
私たちのコードと事前訓練されたウェイトはhttps://www.oetu.com/oetu/otis.comで公開されています。
論文 参考訳(メタデータ) (2024-10-09T17:09:30Z) - UniCL: A Universal Contrastive Learning Framework for Large Time Series Models [18.005358506435847]
時系列分析は、金融から医療まで、さまざまな重要なアプリケーションにおいて重要な役割を果たす。
従来の教師付き学習手法は、まず各タスクにおける時系列データの広範なラベルを注釈付けする。
本稿では,時系列基礎モデルの事前学習を目的とした,普遍的でスケーラブルなコントラスト学習フレームワークUniCLを紹介する。
論文 参考訳(メタデータ) (2024-05-17T07:47:11Z) - Cross-Domain Pre-training with Language Models for Transferable Time Series Representations [32.8353465232791]
CrossTimeNetは、さまざまなドメインから転送可能な知識を学ぶための、新しいクロスドメインSSL学習フレームワークである。
CrossTimeNetの重要な特徴の1つは、新しく設計された時系列トークン化モジュールである。
我々は、様々な時系列分類領域にわたる実世界のシナリオにおいて広範な実験を行う。
論文 参考訳(メタデータ) (2024-03-19T02:32:47Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Large Pre-trained time series models for cross-domain Time series analysis tasks [20.228846068418765]
Large Pre-trained Time-Series Models (LPTM) は、事前トレーニング中に最適なデータセット固有のセグメンテーション戦略を自動的に識別する適応セグメンテーションの新しい手法である。
LPTMは、最先端のベースラインに比べて最大40%データが少なく、トレーニング時間も50%少ない。
論文 参考訳(メタデータ) (2023-11-19T20:16:16Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
パウラ理論に基づいて,最近導入されたトランスフォーマーに基づく注目パウラ(TACTiS)の簡易な目的を提案する。
結果から,実世界の予測タスクにまたがって,このモデルのトレーニング性能が大幅に向上し,最先端のパフォーマンスが達成できることが示唆された。
論文 参考訳(メタデータ) (2023-10-02T16:45:19Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。