論文の概要: Metric-Guided Synthesis of Class Activation Mapping
- arxiv url: http://arxiv.org/abs/2504.09998v1
- Date: Mon, 14 Apr 2025 09:01:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:52.375769
- Title: Metric-Guided Synthesis of Class Activation Mapping
- Title(参考訳): メトリックガイドによるクラス活性化マッピングの合成
- Authors: Alejandro Luque-Cerpa, Elizabeth Polgreen, Ajitha Rajan, Hazem Torfah,
- Abstract要約: クラスアクティベーションマッピング(クラスアクティベーションマッピング、Class activation mapping、CAM)は、畳み込みニューラルネットワーク(CNN)の振る舞いを説明するために用いられるサリエンシ手法のクラスである。
本稿では,CAM表現のためのメトリクスベースアプローチであるSyCAMを紹介する。
- 参考スコア(独自算出の注目度): 46.28094812718678
- License:
- Abstract: Class activation mapping (CAM) is a widely adopted class of saliency methods used to explain the behavior of convolutional neural networks (CNNs). These methods generate heatmaps that highlight the parts of the input most relevant to the CNN output. Various CAM methods have been proposed, each distinguished by the expressions used to derive heatmaps. In general, users look for heatmaps with specific properties that reflect different aspects of CNN functionality. These may include similarity to ground truth, robustness, equivariance, and more. Although existing CAM methods implicitly encode some of these properties in their expressions, they do not allow for variability in heatmap generation following the user's intent or domain knowledge. In this paper, we address this limitation by introducing SyCAM, a metric-based approach for synthesizing CAM expressions. Given a predefined evaluation metric for saliency maps, SyCAM automatically generates CAM expressions optimized for that metric. We specifically explore a syntax-guided synthesis instantiation of SyCAM, where CAM expressions are derived based on predefined syntactic constraints and the given metric. Using several established evaluation metrics, we demonstrate the efficacy and flexibility of our approach in generating targeted heatmaps. We compare SyCAM with other well-known CAM methods on three prominent models: ResNet50, VGG16, and VGG19.
- Abstract(参考訳): クラスアクティベーションマッピング(クラスアクティベーションマッピング、Class activation mapping、CAM)は、畳み込みニューラルネットワーク(CNN)の振舞いを説明するために広く採用されているサリエンシ手法のクラスである。
これらの方法は、CNN出力に最も関係のある入力の一部をハイライトするヒートマップを生成する。
熱マップを導出する式によって区別される様々なCAM法が提案されている。
一般的に、ユーザーはCNN機能の異なる側面を反映する特定の特性を持つヒートマップを探す。
これらは、基底真理、堅牢性、等分性などと類似している。
既存のCAMメソッドは、これらの特性の一部を暗黙的に表現にエンコードするが、ユーザの意図やドメイン知識に従って、ヒートマップ生成のばらつきを許さない。
本稿では,CAM表現を合成するためのメトリクスベースのアプローチであるSyCAMを導入することで,この制限に対処する。
満足度マップに対する事前定義された評価基準が与えられた場合、SyCAMはその指標に最適化されたCAM式を自動的に生成する。
本稿では,SyCAMの構文誘導合成インスタンス化について検討し,CAM表現は予め定義された構文制約と与えられた計量に基づいて導出される。
いくつかの確立された評価指標を用いて,対象熱マップの生成におけるアプローチの有効性と柔軟性を示す。
我々は,SyCAMとResNet50,VGG16,VGG19の3つの著名なモデル上での他のよく知られたCAM手法との比較を行った。
関連論文リスト
- A Top-down Graph-based Tool for Modeling Classical Semantic Maps: A Crosslinguistic Case Study of Supplementary Adverbs [50.982315553104975]
セマンティックマップモデル(SMM)は、言語横断的なインスタンスや形式からネットワークのような概念空間を構築する。
ほとんどのSMMは、ボトムアップ手順を使用して、人間の専門家によって手動で構築される。
本稿では,概念空間とSMMをトップダウンで自動生成するグラフベースの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-12-02T12:06:41Z) - BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
そこで我々はBroadCAMと呼ばれる結果に依存しないCAMアプローチを提案する。
VOC2012でBroadCAM、WSSSでBCSS-WSSS、WSOLでOpenImages30kを評価することで、BroadCAMは優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-09-07T06:45:43Z) - MetaCAM: Ensemble-Based Class Activation Map [0.0]
クラスアクティベーションマップ(Class Activation Maps, CAM)は、CNNの視覚的説明法として人気が高まっている。
本稿では,複数の既存CAM手法を組み合わせたアンサンブルに基づくメタCAMを提案する。
メタCAMは既存のCAMよりも優れており、モデル予測に使用される画像の最も健全な領域を洗練している。
論文 参考訳(メタデータ) (2023-07-31T17:20:48Z) - Opti-CAM: Optimizing saliency maps for interpretability [10.122899813335694]
CAMに基づくアイデアとマスキングに基づくアプローチを組み合わせたOpti-CAMを紹介する。
われわれのサリエンシマップは特徴マップを線形に組み合わせたもので、画像ごとに重みが最適化されている。
いくつかのデータセットでは、Opti-CAMは最も関連する分類基準に従って、他のCAMベースのアプローチよりもはるかに優れています。
論文 参考訳(メタデータ) (2023-01-17T16:44:48Z) - Recipro-CAM: Gradient-free reciprocal class activation map [0.0]
本稿では,アクティベーションマップとネットワーク出力の相関性を利用するために,軽量なアーキテクチャと勾配のないReciprocal CAM(Recipro-CAM)を提案する。
提案手法により,Score-CAMと比較してResNetファミリーの1:78~3:72%のゲインを得た。
さらに、Recipro-CAMはGrad-CAMと似たサリエンシマップ生成率を示し、Score-CAMの約148倍高速である。
論文 参考訳(メタデータ) (2022-09-28T13:15:03Z) - VS-CAM: Vertex Semantic Class Activation Mapping to Interpret Vision
Graph Neural Network [10.365366151667017]
グラフ畳み込みニューラルネットワーク(GCN)は注目度を高め、様々なコンピュータビジョンタスクで優れたパフォーマンスを達成した。
標準畳み込みニューラルネットワーク(CNN)では、クラスアクティベーションマッピング(CAM)法が、ヒートマップを生成することで、CNNの決定と画像領域の間の接続を可視化するために一般的に使用される。
本稿では,特にGCN, Vertex Semantic Class Activation Mapping (VS-CAM)に適用可能な新しい可視化手法を提案する。
論文 参考訳(メタデータ) (2022-09-15T09:45:59Z) - Generalizing Adversarial Explanations with Grad-CAM [7.165984630575092]
本稿では,Grad-CAMを例ベースの説明からグローバルモデル動作を説明する方法まで拡張する手法を提案する。
実験では,VGG16,ResNet50,ResNet101などの深層モデルと,InceptionNetv3やXceptionNetのような広層モデルに対する敵攻撃について検討した。
提案手法は、画像解析のためのブラックボックスCNNモデルの振る舞いを解析し、敵攻撃を理解するために利用できる。
論文 参考訳(メタデータ) (2022-04-11T22:09:21Z) - Class Re-Activation Maps for Weakly-Supervised Semantic Segmentation [88.55040177178442]
クラスアクティベーションマップ(CAM)は、セマンティックセグメンテーションのための疑似マスクを生成する最も標準的なステップである。
しかし、不満足な擬似マスクのくちばしは、CAMで広く使われているバイナリクロスエントロピー損失(BCE)である。
ソフトマックスクロスエントロピー損失(SCE)を用いて収束CAMをBCEで再活性化する。
PASCAL VOC と MSCOCO の評価は、ReCAM が高品質なマスクを生成するだけでなく、オーバーヘッドの少ない任意の CAM 版でプラグイン・アンド・プレイをサポートすることを示している。
論文 参考訳(メタデータ) (2022-03-02T09:14:58Z) - SChME at SemEval-2020 Task 1: A Model Ensemble for Detecting Lexical
Semantic Change [58.87961226278285]
本稿では,SemEval-2020 Task 1における語彙意味変化の教師なし検出法であるSChMEについて述べる。
SChMEは、分布モデル(単語埋め込み)とワード周波数モデルの信号を組み合わせたモデルアンサンブルを使用し、各モデルは、その特徴に応じて単語が苦しむ確率を示す投票を行う。
論文 参考訳(メタデータ) (2020-12-02T23:56:34Z) - Use HiResCAM instead of Grad-CAM for faithful explanations of
convolutional neural networks [89.56292219019163]
説明法は意味のある概念を学習し、素早い相関を悪用しないモデルの開発を容易にする。
一般的なニューラルネットワーク説明法であるGrad-CAMの、未認識の制限について説明する。
本稿では,モデルが各予測に使用する場所のみをハイライトするクラス固有の説明手法であるHiResCAMを提案する。
論文 参考訳(メタデータ) (2020-11-17T19:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。