論文の概要: The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
- arxiv url: http://arxiv.org/abs/2504.10020v1
- Date: Mon, 14 Apr 2025 09:25:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:56:09.452825
- Title: The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
- Title(参考訳): パフォーマンス向上のミラージュ:マルチモーダル幻覚に対処するためにコントラストデコーディングが失敗する理由
- Authors: Hao Yin, Gunagzong Si, Zilei Wang,
- Abstract要約: マルチモーダル大言語モデル(MLLM)における幻覚の低減に対照的な復号法が広く用いられている
本稿では,このような手法が幻覚の問題を効果的に軽減できないことを示す。
- 参考スコア(独自算出の注目度): 28.24397677839652
- License:
- Abstract: Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
- Abstract(参考訳): コントラストデコーディング戦略は、マルチモーダル大言語モデル(MLLM)における幻覚を減らすために広く用いられている。
これらの手法は対照的なサンプルを構築し、幻覚を誘導し、出力分布でそれらを抑制することによって機能する。
しかし,本研究では,このような手法が幻覚の問題を効果的に軽減できないことを示す。
POPEベンチマークで観測された性能改善は,(1) モデルの出力分布に対する粗悪で一方向の調整,(2) 適応的可視性制約という2つの誤解を招く。
これらの問題を更に説明するために、我々は一連の突発的な改善手法を導入し、その性能を対照的な復号化技術に対して評価する。
実験結果から, 対照的な復号化における性能向上は, 幻覚の緩和という目的とは無関係であることが判明した。
本研究は, コントラストデコード戦略の有効性に関する一般的な仮定に挑戦し, MLLMにおける幻覚に対する真に効果的な解決策を開拓する方法について検討した。
関連論文リスト
- Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
LVLM(Large Vision-Language Models)は、与えられた視覚入力と一致しない幻覚的テキスト応答を生成する傾向がある。
テキストから画像への生成モデルからのフィードバックをデコードプロセスに組み込んだ,新たなトレーニングフリーアルゴリズムである生成フィードバック付き自己修正デコード(DeGF)を導入する。
論文 参考訳(メタデータ) (2025-02-10T03:43:55Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
大規模視覚言語モデル(LVLM)は、下流のマルチモーダルタスクに対する視覚言語理解において顕著な能力を示している。
LVLMは、複雑な生成タスクにおいて幻覚を生じさせ、視覚入力と生成されたコンテンツの間に矛盾が生じている。
本研究では,LVLMにおける幻覚を無訓練で緩和するIMCCD法を提案する。
論文 参考訳(メタデータ) (2025-01-03T17:56:28Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
LVLM(Large Vision-Language Models)はマルチモーダルタスク推論において顕著な機能を示す。
彼らはしばしば、幻覚として知られる視覚的内容が正確に反映されていないように思われる応答を生成する。
近年のアプローチでは、推論段階における復号化戦略を調整することで幻覚を緩和するための訓練不要な手法が導入されている。
textbfVisutextbfal textbfLayer Fustextbfion textbfD
論文 参考訳(メタデータ) (2024-11-24T13:42:02Z) - Q-VLM: Post-training Quantization for Large Vision-Language Models [73.19871905102545]
本稿では,大規模視覚言語モデル(LVLM)の学習後量子化フレームワークを提案する。
視覚言語モデル全体の離散化誤差に大きな影響を及ぼす層間依存関係を抽出し、この依存関係を最適な量子化戦略に組み込む。
実験の結果,提案手法はメモリを2.78倍圧縮し,出力速度を約13B LLaVAモデルで1.44倍向上させることができた。
論文 参考訳(メタデータ) (2024-10-10T17:02:48Z) - Lower Layer Matters: Alleviating Hallucination via Multi-Layer Fusion Contrastive Decoding with Truthfulness Refocused [44.37155553647802]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて例外的な性能を示している。
時に、期待された出力と事実的に不正確な、あるいは不一致なコンテンツを生成する。
近年の研究では,幻覚誘発モデルとアマチュアモデルとの対比的復号化について検討している。
LOL(Lower Layer Matters)と呼ばれる新しいコントラストデコーディングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-08-16T14:23:59Z) - CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models [51.70129969269271]
CODE(Countering Description Contrastive Decoding)という,新しいコントラストベースのデコーディング手法を提案する。
提案手法は幻覚を著しく低減し,様々なベンチマークや最先端のLMM間の相互整合性を改善する。
論文 参考訳(メタデータ) (2024-06-04T03:04:21Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
大規模ビジュアル言語モデル(LVLM)は、マルチモーダルデータの理解において、例外的な能力を示した。
彼らは必然的に幻覚に悩まされ、生成されたテキストと対応するイメージを切断する。
現在の視覚的コントラスト復号法のほとんどは、視覚的不確実性情報を導入して幻覚を緩和しようとするものである。
しかし、彼らは幻覚トークンを正確に誘導するのに苦労し、幻覚を緩和する効果を著しく制限した。
論文 参考訳(メタデータ) (2024-05-24T08:46:31Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - IBD: Alleviating Hallucinations in Large Vision-Language Models via
Image-Biased Decoding [37.16880672402059]
言語的先行性への過度な依存は幻覚に繋がる重要な要因として認識されている。
本稿では,新しい画像バイアスデコーディング手法を導入することにより,この問題を軽減することを提案する。
提案手法は,従来のLVLMと画像バイアスLVLMの予測を対比することにより,次の確率分布を導出する。
論文 参考訳(メタデータ) (2024-02-28T16:57:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。