論文の概要: Unveiling Contrastive Learning's Capability of Neighborhood Aggregation for Collaborative Filtering
- arxiv url: http://arxiv.org/abs/2504.10113v1
- Date: Mon, 14 Apr 2025 11:22:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:48:31.824696
- Title: Unveiling Contrastive Learning's Capability of Neighborhood Aggregation for Collaborative Filtering
- Title(参考訳): 協調フィルタリングにおける非競合学習の近傍集約能力
- Authors: Yu Zhang, Yiwen Zhang, Yi Zhang, Lei Sang, Yun Yang,
- Abstract要約: グラフコントラスト学習(GCL)は、リコメンデータシステムにおいて、徐々に支配的なアプローチになりつつある。
本稿では,CL目標の勾配降下過程がグラフ畳み込みと正式に等価であることを明らかにする。
そこで本稿では,ユーザを他のポジティブなペアから遠ざけながら,対話するすべてのアイテムに近づけるための,新しいエリアアグリゲーションの目標を提案する。
- 参考スコア(独自算出の注目度): 16.02820746003461
- License:
- Abstract: Personalized recommendation is widely used in the web applications, and graph contrastive learning (GCL) has gradually become a dominant approach in recommender systems, primarily due to its ability to extract self-supervised signals from raw interaction data, effectively alleviating the problem of data sparsity. A classic GCL-based method typically uses data augmentation during graph convolution to generates more contrastive views, and performs contrast on these new views to obtain rich self-supervised signals. Despite this paradigm is effective, the reasons behind the performance gains remain a mystery. In this paper, we first reveal via theoretical derivation that the gradient descent process of the CL objective is formally equivalent to graph convolution, which implies that CL objective inherently supports neighborhood aggregation on interaction graphs. We further substantiate this capability through experimental validation and identify common misconceptions in the selection of positive samples in previous methods, which limit the potential of CL objective. Based on this discovery, we propose the Light Contrastive Collaborative Filtering (LightCCF) method, which introduces a novel neighborhood aggregation objective to bring users closer to all interacted items while pushing them away from other positive pairs, thus achieving high-quality neighborhood aggregation with very low time complexity. On three highly sparse public datasets, the proposed method effectively aggregate neighborhood information while preventing graph over-smoothing, demonstrating significant improvements over existing GCL-based counterparts in both training efficiency and recommendation accuracy. Our implementations are publicly accessible.
- Abstract(参考訳): パーソナライズされたレコメンデーションはWebアプリケーションで広く使われており、グラフコントラスト学習(GCL)は、主に生のインタラクションデータから自己教師付き信号を抽出し、データ空間の問題を効果的に緩和する能力によって、レコメンデーションシステムにおいて、次第に支配的なアプローチになりつつある。
古典的なGCLベースの手法では、グラフ畳み込み中にデータ拡張を使用して、よりコントラストのあるビューを生成し、これらの新しいビューに対してコントラストを実行して、リッチな自己管理信号を得るのが一般的である。
このパラダイムが効果的であるにもかかわらず、パフォーマンス向上の背景にある理由は謎のままである。
本稿では、まず、CL目的の勾配降下過程がグラフ畳み込みと正式に等価であることを理論的導出により明らかにし、CL目的が本質的に相互作用グラフ上の近傍集約をサポートすることを示唆する。
さらに,この能力を実験的に検証し,従来手法における正のサンプル選択における共通誤解を同定し,CL目標の可能性を制限する。
この発見に基づいて,光コントラスト協調フィルタリング(Light Contrastive Collaborative Filtering, LightCCF)手法を提案する。
3つの高度にスパースな公開データセットにおいて,提案手法はグラフオーバースムース化を防止しつつ,近隣情報を効果的に集約し,学習効率と推薦精度の両方において既存のGCLベースのデータセットよりも大幅に向上したことを示す。
私たちの実装は公開されています。
関連論文リスト
- Enhancing Graph Contrastive Learning with Reliable and Informative Augmentation for Recommendation [84.45144851024257]
離散コードによるより強力な協調情報を用いて、コントラスト的なビューを構築することにより、グラフのコントラスト学習を強化することを目的とした、新しいフレームワークを提案する。
中心となる考え方は、ユーザとアイテムを協調情報に富んだ離散コードにマッピングし、信頼性と情報に富んだコントラッシブなビュー生成を可能にすることである。
論文 参考訳(メタデータ) (2024-09-09T14:04:17Z) - Dual-Channel Latent Factor Analysis Enhanced Graph Contrastive Learning for Recommendation [2.9449497738046078]
グラフニューラルネットワーク(GNN)は、推薦システムのための強力な学習方法である。
近年,コントラスト学習とGNNの統合は,レコメンデータシステムにおいて顕著な性能を示している。
本研究は,LFA-GCLと呼ばれる潜在因子分析(LFA)強化GCLアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-09T03:24:48Z) - Fusion Self-supervised Learning for Recommendation [16.02820746003461]
本稿では,Fusion Self-supervised Learningフレームワークを提案する。
具体的には、GCNプロセスからの高次情報を用いてコントラストビューを作成します。
各種CL目標からの自己教師付き信号を統合するために,先進CL目標を提案する。
論文 参考訳(メタデータ) (2024-07-29T04:30:38Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
本研究では,グローバルな視点から複雑な関連性を持つ項目表現を強化するために,グラフコントラスト学習を提案する。
本稿では,CapsNetモジュールを拡張したターゲットアテンション機構により,ユーザの動的嗜好を導出する。
提案したGUESRは,大幅な改善を達成できただけでなく,汎用的な拡張戦略ともみなすことができた。
論文 参考訳(メタデータ) (2023-03-01T05:46:36Z) - Self-supervised Graph-based Point-of-interest Recommendation [66.58064122520747]
Next Point-of-Interest (POI)レコメンデーションは、ロケーションベースのeコマースにおいて重要なコンポーネントとなっている。
自己教師付きグラフ強化POIレコメンデーション(S2GRec)を次のPOIレコメンデーションのために提案する。
特に,グローバル・トランジション・グラフと局所軌道グラフの両方からの協調的な信号を組み込むために,グラフ強化セルフアテンテート・レイヤを考案した。
論文 参考訳(メタデータ) (2022-10-22T17:29:34Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
我々はMixed Graph Contrastive Network(MGCN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
本研究では,非摂動増強戦略と相関還元機構により,潜伏埋め込みの識別能力を向上する。
これら2つの設定を組み合わせることで、識別表現学習のために、豊富なノードと稀に価値あるラベル付きノードの両方から、豊富な監視情報を抽出する。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - FastGCL: Fast Self-Supervised Learning on Graphs via Contrastive
Neighborhood Aggregation [26.07819501316758]
よりコントラスト的なスキームは、グラフニューラルネットワークの特性に合わせて調整されるべきである、と我々は主張する。
重み付けと非集約の近傍情報をそれぞれ正と負のサンプルとして構成することにより、FastGCLはデータの潜在的な意味情報を識別する。
ノード分類とグラフ分類のタスクについて実験を行い、FastGCLは競合する分類性能と重要なトレーニングスピードアップを有することを示した。
論文 参考訳(メタデータ) (2022-05-02T13:33:43Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。