BoTTA: Benchmarking on-device Test Time Adaptation
- URL: http://arxiv.org/abs/2504.10149v2
- Date: Wed, 16 Apr 2025 13:16:19 GMT
- Title: BoTTA: Benchmarking on-device Test Time Adaptation
- Authors: Michal Danilowski, Soumyajit Chatterjee, Abhirup Ghosh,
- Abstract summary: Test-time adaptation (TTA) addresses this by adapting models during inference without requiring labeled test data or access to the original training set.<n>We propose BoTTA, a benchmark designed to evaluate TTA methods under practical constraints on mobile and edge devices.<n>We assess state-of-the-art TTA methods under these scenarios using benchmark datasets and report system-level metrics on a real testbed.
- Score: 0.7278033100480175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of deep learning models depends heavily on test samples at runtime, and shifts from the training data distribution can significantly reduce accuracy. Test-time adaptation (TTA) addresses this by adapting models during inference without requiring labeled test data or access to the original training set. While research has explored TTA from various perspectives like algorithmic complexity, data and class distribution shifts, model architectures, and offline versus continuous learning, constraints specific to mobile and edge devices remain underexplored. We propose BoTTA, a benchmark designed to evaluate TTA methods under practical constraints on mobile and edge devices. Our evaluation targets four key challenges caused by limited resources and usage conditions: (i) limited test samples, (ii) limited exposure to categories, (iii) diverse distribution shifts, and (iv) overlapping shifts within a sample. We assess state-of-the-art TTA methods under these scenarios using benchmark datasets and report system-level metrics on a real testbed. Furthermore, unlike prior work, we align with on-device requirements by advocating periodic adaptation instead of continuous inference-time adaptation. Experiments reveal key insights: many recent TTA algorithms struggle with small datasets, fail to generalize to unseen categories, and depend on the diversity and complexity of distribution shifts. BoTTA also reports device-specific resource use. For example, while SHOT improves accuracy by $2.25\times$ with $512$ adaptation samples, it uses $1.08\times$ peak memory on Raspberry Pi versus the base model. BoTTA offers actionable guidance for TTA in real-world, resource-constrained deployments.
Related papers
- Test-Time Training Provably Improves Transformers as In-context Learners [49.09821664572445]
We investigate a gradient-based TTT algorithm for in-context learning.
We train a transformer model on the in-context demonstrations provided in the test prompt.
As our empirical contribution, we study the benefits of TTT for TabPFN.
arXiv Detail & Related papers (2025-03-14T20:06:37Z) - BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - Persistent Test-time Adaptation in Recurring Testing Scenarios [12.024233973321756]
Current test-time adaptation (TTA) approaches aim to adapt a machine learning model to environments that change continuously.
Yet, it is unclear whether TTA methods can maintain their adaptability over prolonged periods.
We propose persistent TTA (PeTTA) which senses when the model is diverging towards collapse and adjusts the adaptation strategy.
arXiv Detail & Related papers (2023-11-30T02:24:44Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [117.72709110877939]
Test-time adaptation (TTA) has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions.<n>We categorize TTA into several distinct groups based on the form of test data, namely, test-time domain adaptation, test-time batch adaptation, and online test-time adaptation.
arXiv Detail & Related papers (2023-03-27T16:32:21Z) - Robust Test-Time Adaptation in Dynamic Scenarios [9.475271284789969]
Test-time adaptation (TTA) intends to adapt the pretrained model to test distributions with only unlabeled test data streams.
We elaborate a Robust Test-Time Adaptation (RoTTA) method against the complex data stream in PTTA.
Our method is easy to implement, making it a good choice for rapid deployment.
arXiv Detail & Related papers (2023-03-24T10:19:14Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST) is a technique that takes as input a model trained on some source data and a novel data distribution at test time.
We find that models adapted using TeST significantly improve over baseline test-time adaptation algorithms.
arXiv Detail & Related papers (2022-09-23T07:47:33Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.