Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation
- URL: http://arxiv.org/abs/2402.16333v2
- Date: Mon, 17 Jun 2024 05:37:35 GMT
- Title: Unveiling the Truth and Facilitating Change: Towards Agent-based Large-scale Social Movement Simulation
- Authors: Xinyi Mou, Zhongyu Wei, Xuanjing Huang,
- Abstract summary: Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change.
We introduce a hybrid framework HiSim for social media user simulation, wherein users are categorized into two types.
We construct a Twitter-like environment to replicate their response dynamics following trigger events.
- Score: 43.46328146533669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media has emerged as a cornerstone of social movements, wielding significant influence in driving societal change. Simulating the response of the public and forecasting the potential impact has become increasingly important. However, existing methods for simulating such phenomena encounter challenges concerning their efficacy and efficiency in capturing the behaviors of social movement participants. In this paper, we introduce a hybrid framework HiSim for social media user simulation, wherein users are categorized into two types. Core users are driven by Large Language Models, while numerous ordinary users are modeled by deductive agent-based models. We further construct a Twitter-like environment to replicate their response dynamics following trigger events. Subsequently, we develop a multi-faceted benchmark SoMoSiMu-Bench for evaluation and conduct comprehensive experiments across real-world datasets. Experimental results demonstrate the effectiveness and flexibility of our method.
Related papers
- AgentSociety: Large-Scale Simulation of LLM-Driven Generative Agents Advances Understanding of Human Behaviors and Society [32.849311155921264]
We propose AgentSociety, a large-scale social simulator that integrates a realistic societal environment.
Based on the proposed simulator, we generate social lives for over 10k agents, simulating their 5 million interactions.
We focus on four key social issues: polarization, the spread of inflammatory messages, the effects of universal basic income policies, and the impact of external shocks such as hurricanes.
arXiv Detail & Related papers (2025-02-12T15:27:07Z) - TrendSim: Simulating Trending Topics in Social Media Under Poisoning Attacks with LLM-based Multi-agent System [90.09422823129961]
We propose TrendSim, an LLM-based multi-agent system to simulate trending topics in social media under poisoning attacks.
Specifically, we create a simulation environment for trending topics that incorporates a time-aware interaction mechanism, centralized message dissemination, and an interactive system.
We develop LLM-based human-like agents to simulate users in social media, and propose prototype-based attackers to replicate poisoning attacks.
arXiv Detail & Related papers (2024-12-14T12:04:49Z) - From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents [47.935533238820334]
Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns.
Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies.
We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Simulation Society, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics.
arXiv Detail & Related papers (2024-12-04T18:56:37Z) - Build An Influential Bot In Social Media Simulations With Large Language Models [7.242974711907219]
This study introduces a novel simulated environment that combines Agent-Based Modeling (ABM) with Large Language Models (LLMs)
We present an innovative application of Reinforcement Learning (RL) to replicate the process of opinion leader formation.
Our findings reveal that limiting the action space and incorporating self-observation are key factors for achieving stable opinion leader generation.
arXiv Detail & Related papers (2024-11-29T11:37:12Z) - OASIS: Open Agent Social Interaction Simulations with One Million Agents [147.00696959981173]
We propose a scalable social media simulator based on real-world social media platforms.
OASIS supports large-scale user simulations capable of modeling up to one million users.
We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms.
arXiv Detail & Related papers (2024-11-18T13:57:35Z) - Fusing Dynamics Equation: A Social Opinions Prediction Algorithm with LLM-based Agents [6.1923703280119105]
This paper proposes an innovative simulation method for the dynamics of social media user opinions.
The FDE-LLM algorithm incorporates opinion dynamics and epidemic model.
It categorizes users into opinion leaders and followers.
arXiv Detail & Related papers (2024-09-13T11:02:28Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.