LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks
- URL: http://arxiv.org/abs/2504.10185v2
- Date: Wed, 16 Apr 2025 14:45:55 GMT
- Title: LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks
- Authors: Soumyadeep Pal, Changsheng Wang, James Diffenderfer, Bhavya Kailkhura, Sijia Liu,
- Abstract summary: Large language model unlearning has become a critical challenge in ensuring safety and controlled model behavior.<n>We show that LLM unlearning can be effectively maintained using a significantly smaller subset (functioning as a "coreset")<n>This suggests that LLM unlearning in these benchmarks can be performed surprisingly easily, even in an extremely low-data regime.
- Score: 23.5632914682956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model unlearning has become a critical challenge in ensuring safety and controlled model behavior by removing undesired data-model influences from the pretrained model while preserving general utility. Significant recent efforts have been dedicated to developing LLM unlearning benchmarks such as WMDP (Weapons of Mass Destruction Proxy) and MUSE (Machine Unlearning Six-way Evaluation), facilitating standardized unlearning performance assessment and method comparison. Despite their usefulness, we uncover for the first time a novel coreset effect within these benchmarks. Specifically, we find that LLM unlearning achieved with the original (full) forget set can be effectively maintained using a significantly smaller subset (functioning as a "coreset"), e.g., as little as 5% of the forget set, even when selected at random. This suggests that LLM unlearning in these benchmarks can be performed surprisingly easily, even in an extremely low-data regime. We demonstrate that this coreset effect remains strong, regardless of the LLM unlearning method used, such as NPO (Negative Preference Optimization) and RMU (Representation Misdirection Unlearning), the popular ones in these benchmarks. The surprisingly strong coreset effect is also robust across various data selection methods, ranging from random selection to more sophisticated heuristic approaches. We explain the coreset effect in LLM unlearning through a keyword-based perspective, showing that keywords extracted from the forget set alone contribute significantly to unlearning effectiveness and indicating that current unlearning is driven by a compact set of high-impact tokens rather than the entire dataset. We further justify the faithfulness of coreset-unlearned models along additional dimensions, such as mode connectivity and robustness to jailbreaking attacks. Codes are available at https://github.com/OPTML-Group/MU-Coreset.
Related papers
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.<n>Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - Tapered Off-Policy REINFORCE: Stable and efficient reinforcement learning for LLMs [15.806503459642665]
We propose a new algorithm for fine-tuning large language models using reinforcement learning.
We show that properly leveraging positive and negative examples alike in the off-policy regime simultaneously increases test-time accuracy and training data efficiency.
As a corollary to this work, we find that REINFORCE's baseline parameter plays an important and unexpected role in defining dataset composition in the presence of negative examples.
arXiv Detail & Related papers (2025-03-18T14:23:37Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.
Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Multi-Objective Large Language Model Unlearning [3.372396620898397]
Gradient Ascent (GA) is a proactive way to decrease the prediction probability of the model on the target data.
We propose Multi-Objective Large Language Model Unlearning (MOLLM) algorithm to overcome gradient explosion and catastrophic forgetting.
Our empirical results verify that MoLLM outperforms the SOTA GA-based LLM unlearning methods in terms of unlearning effect and model utility preservation.
arXiv Detail & Related papers (2024-12-29T09:35:56Z) - Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes.<n>We show that unlearning has a notable impact on general model capabilities.<n>We show that doing 5-shot prompting or rephrasing the question in simple ways can lead to an over ten-fold increase in accuracy on unlearning benchmarks.
arXiv Detail & Related papers (2024-11-18T22:31:17Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - LLMEmbed: Rethinking Lightweight LLM's Genuine Function in Text Classification [13.319594321038926]
We propose a simple and effective transfer learning strategy, namely LLMEmbed, to address this classical but challenging task.
We perform extensive experiments on publicly available datasets, and the results show that LLMEmbed achieves strong performance while enjoys low training overhead.
arXiv Detail & Related papers (2024-06-06T03:46:59Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Language models are weak learners [71.33837923104808]
We show that prompt-based large language models can operate effectively as weak learners.
We incorporate these models into a boosting approach, which can leverage the knowledge within the model to outperform traditional tree-based boosting.
Results illustrate the potential for prompt-based LLMs to function not just as few-shot learners themselves, but as components of larger machine learning pipelines.
arXiv Detail & Related papers (2023-06-25T02:39:19Z) - Online Coreset Selection for Rehearsal-based Continual Learning [65.85595842458882]
In continual learning, we store a subset of training examples (coreset) to be replayed later to alleviate catastrophic forgetting.
We propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration.
Our proposed method maximizes the model's adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting.
arXiv Detail & Related papers (2021-06-02T11:39:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.