論文の概要: Differentially Private 2D Human Pose Estimation
- arxiv url: http://arxiv.org/abs/2504.10190v2
- Date: Tue, 15 Apr 2025 10:59:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:10:17.660861
- Title: Differentially Private 2D Human Pose Estimation
- Title(参考訳): 個人別2次元人物位置推定
- Authors: Kaushik Bhargav Sivangi, Idris Zakariyya, Paul Henderson, Fani Deligianni,
- Abstract要約: 2D-HPE(differially Private Gradient Descent, DP-SGD)を応用し, 初めての個人用2次元ポーズ推定手法を提案する。
当社のアプローチはマルチメディア解釈タスクにおいて特に有用であり,多様な視覚メディア間でのプライバシー保護分析と人間の動作の理解を可能にしている。
この研究は、現実世界の機密性の高いアプリケーションにおいて、プライバシー保護のための人間のポーズ推定の基礎を築いた。
- 参考スコア(独自算出の注目度): 5.639791148291438
- License:
- Abstract: Human pose estimation (HPE) has become essential in numerous applications including healthcare, activity recognition, and human-computer interaction. However, the privacy implications of processing sensitive visual data present significant deployment barriers in critical domains. While traditional anonymization techniques offer limited protection and often compromise data utility for broader motion analysis, Differential Privacy (DP) provides formal privacy guarantees but typically degrades model performance when applied naively. In this work, we present the first differentially private 2D human pose estimation (2D-HPE) by applying Differentially Private Stochastic Gradient Descent (DP-SGD) to this task. To effectively balance privacy with performance, we adopt Projected DP-SGD (PDP-SGD), which projects the noisy gradients to a low-dimensional subspace. Additionally, we adapt TinyViT, a compact and efficient vision transformer for coordinate classification in HPE, providing a lightweight yet powerful backbone that enhances privacy-preserving deployment feasibility on resource-limited devices. Our approach is particularly valuable for multimedia interpretation tasks, enabling privacy-safe analysis and understanding of human motion across diverse visual media while preserving the semantic meaning required for downstream applications. Comprehensive experiments on the MPII Human Pose Dataset demonstrate significant performance enhancement with PDP-SGD achieving 78.48% PCKh@0.5 at a strict privacy budget ($\epsilon=0.2$), compared to 63.85% for standard DP-SGD. This work lays foundation for privacy-preserving human pose estimation in real-world, sensitive applications.
- Abstract(参考訳): HPE(Human pose Estimation)は、医療、活動認識、人間とコンピュータの相互作用など、多くの応用において欠かせないものとなっている。
しかし、機密性の高い視覚データを処理することによるプライバシー上の影響は、重要なドメインにおいて重大なデプロイメント障壁を示す。
従来の匿名化技術は限定的な保護を提供し、より広範なモーション分析のためにデータユーティリティを妥協することが多いが、差分プライバシー(DP)は正式なプライバシー保証を提供するが、通常、鼻で適用するとモデルのパフォーマンスが低下する。
本研究では,この課題にDP-SGDを応用し,最初の微分プライベートな2次元ポーズ推定(2D-HPE)を提案する。
低次元部分空間に雑音勾配を投影するPDP-SGD(Projected DP-SGD)を採用した。
さらに、HPEのコーディネート分類のためのコンパクトで効率的な視覚変換器であるTinyViTを適用し、リソース制限されたデバイスにおけるプライバシ保護デプロイメントの実現可能性を高める軽量で強力なバックボーンを提供する。
我々のアプローチはマルチメディアの解釈タスクにおいて特に有用であり、下流アプリケーションに必要な意味を保ちながら、様々なビジュアルメディアにわたる人間の動きのプライバシー保護分析と理解を可能にしている。
MPII Human Pose Datasetの総合的な実験では、標準のDP-SGDの63.85%に対して、厳格なプライバシー予算(\epsilon=0.2$)で78.48%のPCKh@0.5を達成した。
この研究は、現実世界の機密性の高いアプリケーションにおいて、プライバシー保護のための人間のポーズ推定の基礎を築いた。
関連論文リスト
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
プライバシを保存するコンピュータビジョンは、機械学習と人工知能において重要な問題である。
本稿では,ビデオデータセット中の感性のある被験者を文脈内の合成アバターに置き換える匿名化パイプラインを提案する。
また、匿名化されていないがプライバシーに敏感な背景情報を保護するため、MaskDPを提案する。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Scalable Differential Privacy Mechanisms for Real-Time Machine Learning Applications [0.0]
大規模言語モデル(LLM)は、ユーザのプライバシ保護が最重要であるリアルタイム機械学習アプリケーションに、ますます統合されている。
従来の差分プライバシーメカニズムは、プライバシーと精度のバランスをとるのに苦労することが多い。
当社では,堅牢なプライバシ保証とモデルパフォーマンスの向上を重視した,リアルタイム機械学習に適したフレームワークであるScalable Differential Privacy(SDP)を紹介した。
論文 参考訳(メタデータ) (2024-09-16T20:52:04Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Differentially Private Fine-Tuning of Diffusion Models [22.454127503937883]
微分プライバシーと拡散モデル(DM)の統合は、有望だが挑戦的なフロンティアを示している。
この分野での最近の進歩は、公開データによる事前学習によって高品質な合成データを生成する可能性を強調している。
本稿では,プライバシとユーティリティのトレードオフを高めるために,トレーニング可能なパラメータの数を最小限に抑える,プライベート拡散モデルに最適化された戦略を提案する。
論文 参考訳(メタデータ) (2024-06-03T14:18:04Z) - Pre-training Differentially Private Models with Limited Public Data [54.943023722114134]
ディファレンシャルプライバシ(DP)は、モデルに提供されるセキュリティの度合いを測定するための重要な手法である。
DPはまだ、最初の事前訓練段階で使用されるデータのかなりの部分を保護することができない。
公共データの10%しか利用しない新しいDP継続事前学習戦略を開発した。
ImageNet-21kのDP精度は41.5%、非DP精度は55.7%、下流タスクのPlaces365とiNaturalist-2021では60.0%である。
論文 参考訳(メタデータ) (2024-02-28T23:26:27Z) - Privacy Constrained Fairness Estimation for Decision Trees [2.9906966931843093]
任意のAIモデルの公平さを測定するには、データセット内の個人の敏感な属性が必要である。
プライバシ・アウェア・フェアネス・オブ・ルール(PAFER)と呼ばれる新しい手法を提案する。
提案手法は,ラプラシアン機構を用いて,データセット内の個人のプライバシーを高い確度で保証しつつ,低い誤差でSPを推定できることを示す。
論文 参考訳(メタデータ) (2023-12-13T14:54:48Z) - Sparsity-Preserving Differentially Private Training of Large Embedding
Models [67.29926605156788]
DP-SGDは、差分プライバシーと勾配降下を組み合わせたトレーニングアルゴリズムである。
DP-SGDをネーティブに埋め込みモデルに適用すると、勾配の間隔が破壊され、トレーニング効率が低下する。
我々は,大規模埋め込みモデルのプライベートトレーニングにおいて,勾配間隔を保ったDP-FESTとDP-AdaFESTの2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-11-14T17:59:51Z) - Personalized DP-SGD using Sampling Mechanisms [5.50042037663784]
Phi$,$Delta$)- Personalized Differential Privacy (($Phi$,$Delta$)- PDP。
提案アルゴリズムは,複数ラウンドのパーソナライズされたサンプリング機構を使用し,DP-SGDイテレーションに組み込む。
実データを用いた実験の結果,提案アルゴリズムはDP-SGDとDP-SGDと既存のPDP機構の単純な組み合わせよりも優れていた。
論文 参考訳(メタデータ) (2023-05-24T13:56:57Z) - Dynamic Differential-Privacy Preserving SGD [19.273542515320372]
Differentially-Private Gradient Descent (DP-SGD)は、SGDトレーニング中にクリップされた勾配にノイズを加えることで、トレーニングデータのプライバシ侵害を防止する。
同じクリップ操作とトレーニングステップ間の付加ノイズにより、不安定な更新や、上昇期間も生じる。
更新時にDP-SGDよりも低いプライバシコストの動的DP-SGDを提案する。
論文 参考訳(メタデータ) (2021-10-30T04:45:11Z) - Partial sensitivity analysis in differential privacy [58.730520380312676]
それぞれの入力特徴が個人のプライバシ損失に与える影響について検討する。
プライベートデータベース上でのクエリに対する我々のアプローチを実験的に評価する。
また、合成データにおけるニューラルネットワークトレーニングの文脈における知見についても検討する。
論文 参考訳(メタデータ) (2021-09-22T08:29:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。