ROSFD: Robust Online Streaming Fraud Detection with Resilience to Concept Drift in Data Streams
- URL: http://arxiv.org/abs/2504.10229v1
- Date: Mon, 14 Apr 2025 13:50:23 GMT
- Title: ROSFD: Robust Online Streaming Fraud Detection with Resilience to Concept Drift in Data Streams
- Authors: Vivek Yelleti,
- Abstract summary: Continuous generation of streaming data necessitates timely fraud detection.<n>Traditional batch processing methods often struggle to capture the rapidly evolving patterns of fraudulent activities.<n>This paper highlights the critical importance of processing streaming data for effective fraud detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Continuous generation of streaming data from diverse sources, such as online transactions and digital interactions, necessitates timely fraud detection. Traditional batch processing methods often struggle to capture the rapidly evolving patterns of fraudulent activities. This paper highlights the critical importance of processing streaming data for effective fraud detection. To address the inherent challenges of latency, scalability, and concept drift in streaming environments, we propose a robust online streaming fraud detection (ROSFD) framework. Our proposed framework comprises two key stages: (i) Stage One: Offline Model Initialization. In this initial stage, a model is built in offline settings using incremental learning principles to overcome the "cold-start" problem. (ii) Stage Two: Real-time Model Adaptation. In this dynamic stage, drift detection algorithms (viz.,, DDM, EDDM, and ADWIN) are employed to identify concept drift in the incoming data stream and incrementally train the model accordingly. This "train-only-when-required" strategy drastically reduces the number of retrains needed without significantly impacting the area under the receiver operating characteristic curve (AUC). Overall, ROSFD utilizing ADWIN as the drift detection method demonstrated the best performance among the employed methods. In terms of model efficacy, Adaptive Random Forest consistently outperformed other models, achieving the highest AUC in four out of five datasets.
Related papers
- Online Drift Detection with Maximum Concept Discrepancy [13.48123472458282]
We propose MCD-DD, a novel concept drift detection method based on maximum concept discrepancy.
Our method can adaptively identify varying forms of concept drift by contrastive learning of concept embeddings.
arXiv Detail & Related papers (2024-07-07T13:57:50Z) - Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures [37.66676003679306]
Adapting to concept drift is a challenging task in machine learning.
In communication networks, such issue emerges when performing traffic forecasting following afailure event.
We propose an approach that exploits adaptive learning algorithms, namely, liquid neural networks, which are capable of self-adaptation to abrupt changes in data patterns without requiring any retraining.
arXiv Detail & Related papers (2024-04-08T08:47:46Z) - Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt [37.98336090671441]
Concept textbfDrift textbfDetection antextbfD textbfAdaptation (D3A)
It first detects drifting conception and then aggressively adapts the current model to the drifted concepts after the detection for rapid adaption.
It helps mitigate the data distribution gap, a critical factor contributing to train-test performance inconsistency.
arXiv Detail & Related papers (2024-03-22T04:44:43Z) - METER: A Dynamic Concept Adaptation Framework for Online Anomaly
Detection [25.022228143354123]
Real-time analytics and decision-making require online anomaly detection to handle drifts in data streams efficiently and effectively.
Existing approaches are often constrained by their limited detection capacity and slow adaptation to evolving data streams.
We introduce METER, a novel dynamic concept adaptation framework that introduces a new paradigm for OAD.
arXiv Detail & Related papers (2023-12-28T05:09:31Z) - Cross-modal Prompts: Adapting Large Pre-trained Models for Audio-Visual
Downstream Tasks [55.36987468073152]
This paper proposes a novel Dual-Guided Spatial-Channel-Temporal (DG-SCT) attention mechanism.
The DG-SCT module incorporates trainable cross-modal interaction layers into pre-trained audio-visual encoders.
Our proposed model achieves state-of-the-art results across multiple downstream tasks, including AVE, AVVP, AVS, and AVQA.
arXiv Detail & Related papers (2023-11-09T05:24:20Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
Drift in machine learning refers to the phenomenon where the statistical properties of data or context, in which the model operates, change over time leading to a decrease in its performance.
In our proposed unsupervised drift detection method, we follow a two step process. Our first step involves encoding a sample of production data as the target distribution, and the model training data as the reference distribution.
Our method also identifies the subset of production data that is the root cause of the drift.
The models retrained using these identified high drift samples show improved performance on online customer experience quality metrics.
arXiv Detail & Related papers (2023-09-07T16:45:42Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - Real-time Object Detection for Streaming Perception [84.2559631820007]
Streaming perception is proposed to jointly evaluate the latency and accuracy into a single metric for video online perception.
We build a simple and effective framework for streaming perception.
Our method achieves competitive performance on Argoverse-HD dataset and improves the AP by 4.9% compared to the strong baseline.
arXiv Detail & Related papers (2022-03-23T11:33:27Z) - Self-Supervised Multi-Frame Monocular Scene Flow [61.588808225321735]
We introduce a multi-frame monocular scene flow network based on self-supervised learning.
We observe state-of-the-art accuracy among monocular scene flow methods based on self-supervised learning.
arXiv Detail & Related papers (2021-05-05T17:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.