GNN-ACLP: Graph Neural Networks Based Analog Circuit Link Prediction
- URL: http://arxiv.org/abs/2504.10240v4
- Date: Thu, 24 Jul 2025 11:31:03 GMT
- Title: GNN-ACLP: Graph Neural Networks Based Analog Circuit Link Prediction
- Authors: Guanyuan Pan, Tiansheng Zhou, Bingtao Ma, Yaqi Wang, Jianxiang Zhao, Zhi Li, Yugui Lin, Pietro Lio, Shuai Wang,
- Abstract summary: We propose GNN-ACLP, a graph neural networks (GNNs) based method featuring three innovations to tackle these challenges.<n>First, we introduce the SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction) framework and achieve port-level accuracy in circuit link prediction.<n>Second, we propose Netlist Babel Fish, a netlist format conversion tool leveraging retrieval-augmented generation (RAG) with a large language model (LLM) to improve the compatibility of netlist formats.
- Score: 10.741445394687378
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Circuit link prediction identifying missing component connections from incomplete netlists is crucial in analog circuit design automation. However, existing methods face three main challenges: 1) Insufficient use of topological patterns in circuit graphs reduces prediction accuracy; 2) Data scarcity due to the complexity of annotations hinders model generalization; 3) Limited adaptability to various netlist formats. We propose GNN-ACLP, a graph neural networks (GNNs) based method featuring three innovations to tackle these challenges. First, we introduce the SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction) framework and achieve port-level accuracy in circuit link prediction. Second, we propose Netlist Babel Fish, a netlist format conversion tool leveraging retrieval-augmented generation (RAG) with a large language model (LLM) to improve the compatibility of netlist formats. Finally, we construct SpiceNetlist, a comprehensive dataset that contains 775 annotated circuits across 10 different component classes. Experiments demonstrate accuracy improvements of 16.08% on SpiceNetlist, 11.38% on Image2Net, and 16.01% on Masala-CHAI compared to the baseline in intra-dataset evaluation, while maintaining accuracy from 92.05% to 99.07% in cross-dataset evaluation, exhibiting robust feature transfer capabilities.
Related papers
- NN-Former: Rethinking Graph Structure in Neural Architecture Representation [67.3378579108611]
Graph Neural Networks (GNNs) and transformers have shown promising performance in representing neural architectures.<n>We show that sibling nodes are pivotal while overlooked in previous research.<n>Our approach consistently achieves promising performance in both accuracy and latency prediction.
arXiv Detail & Related papers (2025-07-01T15:46:18Z) - Attribute-Enhanced Similarity Ranking for Sparse Link Prediction [6.774952925054741]
Graph Neural Networks (GNNs) have become the predominant framework for link prediction.
We show that the reported performance of GNNs for link prediction in the balanced setting does not translate to the more realistic imbalanced setting.
Experiments show that Gelato, a similarity-based link-prediction method, outperforms existing GNN-based alternatives.
arXiv Detail & Related papers (2024-11-29T21:22:35Z) - Learning Load Balancing with GNN in MPTCP-Enabled Heterogeneous Networks [13.178956651532213]
We propose a graph neural network (GNN)-based model to tackle the LB problem for MP TCP-enabled HetNets.
Compared to the conventional deep neural network (DNN), the proposed GNN-based model exhibits two key strengths.
arXiv Detail & Related papers (2024-10-22T15:49:53Z) - DE-HNN: An effective neural model for Circuit Netlist representation [11.052573941347267]
Designers want fast tools that can give feedback on a design in significantly shorter time than running the tool.
We propose a Directional Equivariant Hypergraph Neural Network (DE-HNN) for the effective learning of (directed) hypergraphs.
We show that our DE-HNN can universally approximate any node or hyperedge based function that satisfies certain permutation equivariant and invariant properties natural for directed hypergraphs.
arXiv Detail & Related papers (2024-03-30T21:54:01Z) - BLIS-Net: Classifying and Analyzing Signals on Graphs [20.345611294709244]
Graph neural networks (GNNs) have emerged as a powerful tool for tasks such as node classification and graph classification.
We introduce the BLIS-Net (Bi-Lipschitz Scattering Net), a novel GNN that builds on the previously introduced geometric scattering transform.
We show that BLIS-Net achieves superior performance on both synthetic and real-world data sets based on traffic flow and fMRI data.
arXiv Detail & Related papers (2023-10-26T17:03:14Z) - Graph Neural Network for Accurate and Low-complexity SAR ATR [2.9766397696234996]
We propose a graph neural network (GNN) model to achieve accurate and low-latency SAR ATR.
The proposed GNN model has low computation complexity and achieves comparable high accuracy.
Compared with the state-of-the-art CNNs, the proposed GNN model has only 1/3000 computation cost and 1/80 model size.
arXiv Detail & Related papers (2023-05-11T20:17:41Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
lattice hypergraph (LH-graph) is a novel graph formulation for circuits.
LHNN constantly achieves more than 35% improvements compared with U-nets and Pix2Pix on the F1 score.
arXiv Detail & Related papers (2022-03-24T03:31:18Z) - ReIGNN: State Register Identification Using Graph Neural Networks for
Circuit Reverse Engineering [1.6049556762414257]
ReIGNN is a learning-based register classification methodology that combines graph neural networks (GNNs) with structural analysis.
We show that ReIGNN can achieve, on average, 96.5% balanced accuracy and 97.7% sensitivity across different designs.
arXiv Detail & Related papers (2021-12-01T19:53:45Z) - Modeling Gate-Level Abstraction Hierarchy Using Graph Convolutional
Neural Networks to Predict Functional De-Rating Factors [0.0]
The paper proposes a methodology for modeling a gate-level netlist using a Graph Convolutional Network (GCN)
The model predicts the overall functional de-rating factors of sequential elements of a given circuit.
arXiv Detail & Related papers (2021-04-05T08:38:16Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.