BLIS-Net: Classifying and Analyzing Signals on Graphs
- URL: http://arxiv.org/abs/2310.17579v1
- Date: Thu, 26 Oct 2023 17:03:14 GMT
- Title: BLIS-Net: Classifying and Analyzing Signals on Graphs
- Authors: Charles Xu and Laney Goldman and Valentina Guo and Benjamin
Hollander-Bodie and Maedee Trank-Greene and Ian Adelstein and Edward De
Brouwer and Rex Ying and Smita Krishnaswamy and Michael Perlmutter
- Abstract summary: Graph neural networks (GNNs) have emerged as a powerful tool for tasks such as node classification and graph classification.
We introduce the BLIS-Net (Bi-Lipschitz Scattering Net), a novel GNN that builds on the previously introduced geometric scattering transform.
We show that BLIS-Net achieves superior performance on both synthetic and real-world data sets based on traffic flow and fMRI data.
- Score: 20.345611294709244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have emerged as a powerful tool for tasks such
as node classification and graph classification. However, much less work has
been done on signal classification, where the data consists of many functions
(referred to as signals) defined on the vertices of a single graph. These tasks
require networks designed differently from those designed for traditional GNN
tasks. Indeed, traditional GNNs rely on localized low-pass filters, and signals
of interest may have intricate multi-frequency behavior and exhibit long range
interactions. This motivates us to introduce the BLIS-Net (Bi-Lipschitz
Scattering Net), a novel GNN that builds on the previously introduced geometric
scattering transform. Our network is able to capture both local and global
signal structure and is able to capture both low-frequency and high-frequency
information. We make several crucial changes to the original geometric
scattering architecture which we prove increase the ability of our network to
capture information about the input signal and show that BLIS-Net achieves
superior performance on both synthetic and real-world data sets based on
traffic flow and fMRI data.
Related papers
- Applying Self-supervised Learning to Network Intrusion Detection for
Network Flows with Graph Neural Network [8.318363497010969]
This paper studies the application of GNNs to identify the specific types of network flows in an unsupervised manner.
To the best of our knowledge, it is the first GNN-based self-supervised method for the multiclass classification of network flows in NIDS.
arXiv Detail & Related papers (2024-03-03T12:34:13Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
We propose a hybrid graph neural network (GNN) framework that combines traditional GCN filters with band-pass filters defined via the geometric scattering transform.
Our theoretical results establish the complementary benefits of the scattering filters to leverage structural information from the graph, while our experiments show the benefits of our method on various learning tasks.
arXiv Detail & Related papers (2022-01-22T00:47:41Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.