論文の概要: MURR: Model Updating with Regularized Replay for Searching a Document Stream
- arxiv url: http://arxiv.org/abs/2504.10250v1
- Date: Mon, 14 Apr 2025 14:13:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:53:44.444414
- Title: MURR: Model Updating with Regularized Replay for Searching a Document Stream
- Title(参考訳): MURR: ドキュメントストリーム検索のための正規化リプレイによるモデル更新
- Authors: Eugene Yang, Nicola Tonellotto, Dawn Lawrie, Sean MacAvaney, James Mayfield, Douglas W. Oard, Scott Miller,
- Abstract要約: インターネットは、新しいドキュメントとユーザ生成クエリの連続ストリームを生成する。
クエリとドキュメントのペアの固定セットで一度トレーニングされたニューラル検索モデルは、新しく作成されたコンテンツを誤って表現し始める。
本稿では,正規化リプレイによるモデル更新戦略であるMURRを提案する。
- 参考スコア(独自算出の注目度): 32.0637790321157
- License:
- Abstract: The Internet produces a continuous stream of new documents and user-generated queries. These naturally change over time based on events in the world and the evolution of language. Neural retrieval models that were trained once on a fixed set of query-document pairs will quickly start misrepresenting newly-created content and queries, leading to less effective retrieval. Traditional statistical sparse retrieval can update collection statistics to reflect these changes in the use of language in documents and queries. In contrast, continued fine-tuning of the language model underlying neural retrieval approaches such as DPR and ColBERT creates incompatibility with previously-encoded documents. Re-encoding and re-indexing all previously-processed documents can be costly. In this work, we explore updating a neural dual encoder retrieval model without reprocessing past documents in the stream. We propose MURR, a model updating strategy with regularized replay, to ensure the model can still faithfully search existing documents without reprocessing, while continuing to update the model for the latest topics. In our simulated streaming environments, we show that fine-tuning models using MURR leads to more effective and more consistent retrieval results than other strategies as the stream of documents and queries progresses.
- Abstract(参考訳): インターネットは、新しいドキュメントとユーザ生成クエリの連続的なストリームを生成する。
これらは、世界の出来事と言語の進化に基づいて、時間とともに自然に変化する。
クエリとドキュメントのペアの固定セットで一度トレーニングされたニューラル検索モデルは、新しく作成されたコンテンツとクエリを誤って表現し始める。
従来の統計スパース検索は、収集統計を更新して、文書やクエリにおける言語の使用におけるこれらの変化を反映することができる。
対照的に、DPRやColBERTのようなニューラル検索手法に基づく言語モデルの継続的な微調整は、以前符号化された文書と互換性がない。
以前処理されたすべてのドキュメントの再エンコーディングと再インデックスは、コストがかかる可能性がある。
本研究では,ストリーム内の過去の文書を再処理することなく,ニューラルデュアルエンコーダ検索モデルの更新を検討する。
本稿では,正規化リプレイによるモデル更新戦略であるMURRを提案し,最新のトピックのモデル更新を継続しながら,再処理なしに既存の文書を忠実に検索できることを確認した。
シミュレーションされたストリーミング環境では、MURRを用いた微調整モデルにより、ドキュメントやクエリのストリームが進行するにつれて、他の戦略よりも効率的で一貫性のある検索結果が得られることを示す。
関連論文リスト
- Cognitive-Aligned Document Selection for Retrieval-augmented Generation [2.9060210098040855]
本稿では,クエリを動的に更新し,高品質で信頼性の高い検索文書をフィルタリングするGGatrievalを提案する。
ユーザクエリを構文コンポーネントにパースし、検索したドキュメントときめ細かいグラウンドアライメントを実行する。
提案手法では,検索した文書をフィルタリングするための新しい基準を導入し,ターゲット情報を取得するための人的戦略を密にエミュレートする。
論文 参考訳(メタデータ) (2025-02-17T13:00:15Z) - MaFeRw: Query Rewriting with Multi-Aspect Feedbacks for Retrieval-Augmented Large Language Models [22.50450558103786]
現実世界のRAGシステムでは、現在のクエリは会話コンテキストからの音声楕円とあいまいな参照を含むことが多い。
本稿では,検索プロセスと生成結果の両方からマルチアスペクトフィードバックを統合することにより,RAG性能を向上させる新しいクエリ書き換え手法MaFeRwを提案する。
2つの対話型RAGデータセットの実験結果から、MaFeRwはベースラインよりも優れた生成指標と安定したトレーニングを達成できることが示された。
論文 参考訳(メタデータ) (2024-08-30T07:57:30Z) - Query-oriented Data Augmentation for Session Search [71.84678750612754]
本稿では,検索ログの強化とモデリングの強化を目的としたクエリ指向データ拡張を提案する。
検索コンテキストの最も重要な部分を変更することで補足的なトレーニングペアを生成する。
我々は、現在のクエリを変更するためのいくつかの戦略を開発し、その結果、様々な難易度で新しいトレーニングデータを得る。
論文 参考訳(メタデータ) (2024-07-04T08:08:33Z) - Language Modeling with Editable External Knowledge [90.7714362827356]
本稿では,新たな文書取得時のモデル動作を改善するERASEを提案する。
ドキュメントを追加するたびに、知識ベースで他のエントリを段階的に削除または書き直します。
7-13%(Mixtral-8x7B)と6-10%(Llama-3-8B)の精度を向上する。
論文 参考訳(メタデータ) (2024-06-17T17:59:35Z) - IncDSI: Incrementally Updatable Document Retrieval [35.5697863674097]
IncDSIは、データセット全体のモデルをトレーニングすることなく、リアルタイムでドキュメントを追加する方法である。
我々は、制約付き最適化問題として文書の追加を定式化し、ネットワークパラメータの変更を最小限に抑える。
私たちのアプローチは、データセット全体のモデルの再トレーニングと競合しています。
論文 参考訳(メタデータ) (2023-07-19T07:20:30Z) - DSI++: Updating Transformer Memory with New Documents [95.70264288158766]
DSI++は、DSIが新たなドキュメントをインクリメンタルにインデクシングするための継続的な学習課題である。
新たな文書の連続的な索引付けは,それまでの索引付け文書をかなり忘れてしまうことを示す。
文書の擬似クエリをサンプルとして生成メモリを導入し、連続的なインデックス付け中に補足することで、検索タスクの忘れを防止する。
論文 参考訳(メタデータ) (2022-12-19T18:59:34Z) - CAPSTONE: Curriculum Sampling for Dense Retrieval with Document
Expansion [68.19934563919192]
本稿では,学習中に擬似クエリを利用して,生成したクエリと実際のクエリとの関係を徐々に向上させるカリキュラムサンプリング戦略を提案する。
ドメイン内およびドメイン外両方のデータセットに対する実験結果から,本手法が従来の高密度検索モデルより優れていることが示された。
論文 参考訳(メタデータ) (2022-12-18T15:57:46Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。