A Structure-Preserving Framework for Solving Parabolic Partial Differential Equations with Neural Networks
- URL: http://arxiv.org/abs/2504.10273v2
- Date: Thu, 07 Aug 2025 03:06:27 GMT
- Title: A Structure-Preserving Framework for Solving Parabolic Partial Differential Equations with Neural Networks
- Authors: Gaohang Chen, Lili Ju, Zhonghua Qiao,
- Abstract summary: We propose a novel framework that enhances the physical consistency of existing NN solvers for solving parabolic PDEs.<n>Inspired by the time-dependent spectral renormalization approach, our Sidecar framework introduces a small network as a copilot.<n>Our framework is highly flexible, allowing the preservation of various physical quantities for different PDEs to be incorporated into a wide range of NN solvers.
- Score: 7.037707804854564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving partial differential equations (PDEs) with neural networks (NNs) has shown great potential in various scientific and engineering fields. However, most existing NN solvers mainly focus on satisfying the given PDE formulas in the strong or weak sense, without explicitly considering some intrinsic physical properties, such as mass and momentum conservation, or energy dissipation. This limitation may result in nonphysical or unstable numerical solutions, particularly in long-term simulations. To address this issue, we propose ``Sidecar'', a novel framework that enhances the physical consistency of existing NN solvers for solving parabolic PDEs. Inspired by the time-dependent spectral renormalization approach, our Sidecar framework introduces a small network as a copilot, guiding the primary function-learning NN solver to respect the structure-preserving properties. Our framework is highly flexible, allowing the preservation of various physical quantities for different PDEs to be incorporated into a wide range of NN solvers. Experimental results on some benchmark problems demonstrate significant improvements brought by the proposed framework to both accuracy and structure preservation of existing NN solvers.
Related papers
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs)<n>We propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations.<n>We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations.
arXiv Detail & Related papers (2024-11-28T13:16:20Z) - SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks [0.9999629695552196]
Physics-Informed Neural Networks (PINNs) have emerged as a promising method for solving partial differential equations (PDEs)
We introduce Separable Physics-Informed Kolmogorov-Arnold Networks (SPIKANs)
This novel architecture applies the principle of separation of variables to PIKANs, decomposing the problem such that each dimension is handled by an individual KAN.
arXiv Detail & Related papers (2024-11-09T21:10:23Z) - SetPINNs: Set-based Physics-informed Neural Networks [31.193471532024407]
We introduce SetPINNs, a framework that effectively captures local dependencies.<n>We partition a domain into sets to model local dependencies while simultaneously enforcing physical laws.
arXiv Detail & Related papers (2024-09-30T11:41:58Z) - Stable Weight Updating: A Key to Reliable PDE Solutions Using Deep Learning [0.0]
This paper introduces novel residual-based architectures, designed to enhance stability and accuracy in physics-informed neural networks (PINNs)
The architectures augment traditional neural networks by incorporating residual connections, which facilitate smoother weight updates and improve backpropagation efficiency.
The Squared Residual Network, in particular, exhibits robust performance, achieving enhanced stability and accuracy compared to conventional neural networks.
arXiv Detail & Related papers (2024-07-10T05:20:43Z) - Structure-Preserving Physics-Informed Neural Networks With Energy or
Lyapunov Structure [9.571966961251347]
We propose structure-preserving PINNs to improve their performance and broaden their applications for downstream tasks.
A framework that utilizes structure-preserving PINN for robust image recognition is proposed.
Experimental results demonstrate that the proposed method improves the numerical accuracy of PINNs for partial differential equations.
arXiv Detail & Related papers (2024-01-10T08:02:38Z) - A Gaussian Process Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations [0.0]
We introduce kernel-weighted Corrective Residuals (CoRes) to integrate the strengths of kernel methods and deep NNs for solving nonlinear PDE systems.
CoRes consistently outperforms competing methods in solving a broad range of benchmark problems.
We believe our findings have the potential to spark a renewed interest in leveraging kernel methods for solving PDEs.
arXiv Detail & Related papers (2024-01-07T14:09:42Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem.
We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems.
arXiv Detail & Related papers (2022-06-27T08:18:08Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
We propose LordNet, a tunable and efficient neural network for modeling entanglements.
The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements can be well modeled by the LordNet.
arXiv Detail & Related papers (2022-06-19T14:41:08Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs.
arXiv Detail & Related papers (2022-06-19T04:12:01Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Scientific Machine Learning through Physics-Informed Neural Networks:
Where we are and What's next [5.956366179544257]
Physic-Informed Neural Networks (PINN) are neural networks (NNs) that encode model equations.
PINNs are nowadays used to solve PDEs, fractional equations, and integral-differential equations.
arXiv Detail & Related papers (2022-01-14T19:05:44Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Bayesian neural networks for weak solution of PDEs with uncertainty
quantification [3.4773470589069473]
A new physics-constrained neural network (NN) approach is proposed to solve PDEs without labels.
We write the loss function of NNs based on the discretized residual of PDEs through an efficient, convolutional operator-based, and vectorized implementation.
We demonstrate the capability and performance of the proposed framework by applying it to steady-state diffusion, linear elasticity, and nonlinear elasticity.
arXiv Detail & Related papers (2021-01-13T04:57:51Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.