Characterizing LLM-driven Social Network: The Chirper.ai Case
- URL: http://arxiv.org/abs/2504.10286v1
- Date: Mon, 14 Apr 2025 14:53:31 GMT
- Title: Characterizing LLM-driven Social Network: The Chirper.ai Case
- Authors: Yiming Zhu, Yupeng He, Ehsan-Ul Haq, Gareth Tyson, Pan Hui,
- Abstract summary: Large language models (LLMs) demonstrate the ability to simulate human decision-making processes.<n>This paper presents a large-scale analysis of Chirper.ai, an X/Twitter-like social network entirely populated by LLM agents.<n>We examine key differences between LLM agents and humans in posting behaviors, abusive content, and social network structures.
- Score: 24.057352135719555
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) demonstrate the ability to simulate human decision-making processes, enabling their use as agents in modeling sophisticated social networks, both offline and online. Recent research has explored collective behavioral patterns and structural characteristics of LLM agents within simulated networks. However, empirical comparisons between LLM-driven and human-driven online social networks remain scarce, limiting our understanding of how LLM agents differ from human users. This paper presents a large-scale analysis of Chirper.ai, an X/Twitter-like social network entirely populated by LLM agents, comprising over 65,000 agents and 7.7 million AI-generated posts. For comparison, we collect a parallel dataset from Mastodon, a human-driven decentralized social network, with over 117,000 users and 16 million posts. We examine key differences between LLM agents and humans in posting behaviors, abusive content, and social network structures. Our findings provide critical insights into the evolving landscape of online social network analysis in the AI era, offering a comprehensive profile of LLM agents in social simulations.
Related papers
- SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [59.39512775126668]
We introduce SocioVerse, an agent-driven world model for social simulation.<n>Our framework features four powerful alignment components and a user pool of 10 million real individuals.<n>Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness.
arXiv Detail & Related papers (2025-04-14T12:12:52Z) - Can LLMs Simulate Social Media Engagement? A Study on Action-Guided Response Generation [51.44040615856536]
This paper analyzes large language models' ability to simulate social media engagement through action guided response generation.<n>We benchmark GPT-4o-mini, O1-mini, and DeepSeek-R1 in social media engagement simulation regarding a major societal event.
arXiv Detail & Related papers (2025-02-17T17:43:08Z) - LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
Large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence.
We present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs.
In LMAgent, besides chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce.
arXiv Detail & Related papers (2024-12-12T12:47:09Z) - Engagement-Driven Content Generation with Large Language Models [8.049552839071918]
Large Language Models (LLMs) exhibit significant persuasion capabilities in one-on-one interactions.
This study investigates the potential social impact of LLMs in interconnected users and complex opinion dynamics.
arXiv Detail & Related papers (2024-11-20T10:40:08Z) - Static network structure cannot stabilize cooperation among Large Language Model agents [6.868298200380496]
Large language models (LLMs) are increasingly used to model human social behavior.
This study aims to identify parallels in cooperative behavior between LLMs and humans.
arXiv Detail & Related papers (2024-11-15T15:52:15Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
This study enhances an LLM-based web agent by simply refining its observation and action space.
AgentOccam surpasses the previous state-of-the-art and concurrent work by 9.8 (+29.4%) and 5.9 (+15.8%) absolute points respectively.
arXiv Detail & Related papers (2024-10-17T17:50:38Z) - LLMs generate structurally realistic social networks but overestimate political homophily [42.229210482614356]
generative AI, especially large language models (LLMs), offer new possibilities for social network generation.<n>We develop three prompting methods for network generation and compare the generated networks to a suite of real social networks.<n>We find that more realistic networks are generated with "local" methods, where the LLM constructs relations for one persona at a time.<n>We also find that the generated networks match real networks on many characteristics, including density, clustering, connectivity, and degree distribution.
arXiv Detail & Related papers (2024-08-29T15:36:52Z) - Is this the real life? Is this just fantasy? The Misleading Success of Simulating Social Interactions With LLMs [24.613282867543244]
Large language models (LLM) have enabled richer social simulations, allowing for the study of various social phenomena.
Recent work has used a more omniscient perspective on these simulations, which is fundamentally at odds with the non-omniscient, information asymmetric interactions that involve humans and AI agents in the real world.
arXiv Detail & Related papers (2024-03-08T03:49:17Z) - Network Formation and Dynamics Among Multi-LLMs [5.8418144988203915]
Large language models (LLMs) like GPT, Claude, and Llama increasingly integrate into social and professional settings.<n>This study develops a framework to examine whether the network formation behaviors of multiple LLMs approximate certain aspects of human network dynamics.
arXiv Detail & Related papers (2024-02-16T13:10:14Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay.
We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction.
Results affirm the framework's effectiveness in creating adaptive agents and suggest LLM-based agents' potential in navigating dynamic social interactions.
arXiv Detail & Related papers (2023-10-23T14:35:26Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
This paper probes the collaboration mechanisms among contemporary NLP systems by practical experiments with theoretical insights.
We fabricate four unique societies' comprised of LLM agents, where each agent is characterized by a specific trait' (easy-going or overconfident) and engages in collaboration with a distinct thinking pattern' (debate or reflection)
Our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring social psychology theories.
arXiv Detail & Related papers (2023-10-03T15:05:52Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.