Network Formation and Dynamics Among Multi-LLMs
- URL: http://arxiv.org/abs/2402.10659v4
- Date: Thu, 05 Dec 2024 04:35:22 GMT
- Title: Network Formation and Dynamics Among Multi-LLMs
- Authors: Marios Papachristou, Yuan Yuan,
- Abstract summary: Large language models (LLMs) like GPT, Claude, and Llama increasingly integrate into social and professional settings.<n>This study develops a framework to examine whether the network formation behaviors of multiple LLMs approximate certain aspects of human network dynamics.
- Score: 5.8418144988203915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social networks fundamentally shape human opinions, behaviors, and the dissemination of information. As large language models (LLMs) like GPT, Claude, and Llama increasingly integrate into social and professional settings, understanding their behavior in the context of social interactions and network formation becomes essential. This study develops a framework to systematically examine whether the network formation behaviors of multiple LLMs approximate certain aspects of human network dynamics. By simulating interactions among LLM agents across various model families, we observe that these models consistently exhibit key patterns associated with social network principles including preferential attachment, triadic closure, homophily, community structure, and the small-world phenomenon when forming networks. Moreover, LLMs adapt their network formation strategies based on each network's characteristics, reflecting the context-dependent nature of human behavior: in Facebook networks, they prioritize triadic closure and homophily, mirroring close-knit friendships; in phone networks, homophily and preferential attachment dominate, capturing personal and professional connections, while in employment networks, LLMs favor heterophily and high-degree connections, aligning with career advancement dynamics. These results open new avenues for using LLMs in network science research, with potential applications in agent-based modeling and synthetic network generation.
Related papers
- Characterizing LLM-driven Social Network: The Chirper.ai Case [24.057352135719555]
Large language models (LLMs) demonstrate the ability to simulate human decision-making processes.
This paper presents a large-scale analysis of Chirper.ai, an X/Twitter-like social network entirely populated by LLM agents.
We examine key differences between LLM agents and humans in posting behaviors, abusive content, and social network structures.
arXiv Detail & Related papers (2025-04-14T14:53:31Z) - DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey [62.697565282841026]
Reinforcement learning (RL)-based large language models (LLMs) have gained significant attention.
Wireless networks require the empowerment of RL-based LLMs.
Wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs.
arXiv Detail & Related papers (2025-03-13T01:59:11Z) - Engagement-Driven Content Generation with Large Language Models [8.049552839071918]
Large Language Models (LLMs) exhibit significant persuasion capabilities in one-on-one interactions.
This study investigates the potential social impact of LLMs in interconnected users and complex opinion dynamics.
arXiv Detail & Related papers (2024-11-20T10:40:08Z) - Static network structure cannot stabilize cooperation among Large Language Model agents [6.868298200380496]
Large language models (LLMs) are increasingly used to model human social behavior.
This study aims to identify parallels in cooperative behavior between LLMs and humans.
arXiv Detail & Related papers (2024-11-15T15:52:15Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks [47.13391046553908]
In artificial networks, the effectiveness of these models relies on their ability to build task specific representation.
Prior studies highlight that different initializations can place networks in either a lazy regime, where representations remain static, or a rich/feature learning regime, where representations evolve dynamically.
These solutions capture the evolution of representations and the Neural Kernel across the spectrum from the rich to the lazy regimes.
arXiv Detail & Related papers (2024-09-22T23:19:04Z) - LLMs generate structurally realistic social networks but overestimate political homophily [42.229210482614356]
We develop three prompting methods for network generation and compare the generated networks to real social networks.
We find that more realistic networks are generated with "local" methods, where the LLM constructs relations for one persona at a time.
We also find that the generated networks match real networks on many characteristics, including density, clustering, community structure, and degree.
arXiv Detail & Related papers (2024-08-29T15:36:52Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Do LLM Agents Exhibit Social Behavior? [5.094340963261968]
State-Understanding-Value-Action (SUVA) is a framework to systematically analyze responses in social contexts.
It assesses social behavior through both their final decisions and the response generation processes leading to those decisions.
We demonstrate that utterance-based reasoning reliably predicts LLMs' final actions.
arXiv Detail & Related papers (2023-12-23T08:46:53Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
We show how a parameterization of recurrent connectivity influences robustness in closed-loop settings.
We find that closed-form continuous-time neural networks (CfCs) with fewer parameters can outperform their full-rank, fully-connected counterparts.
arXiv Detail & Related papers (2023-10-05T21:44:18Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
This paper probes the collaboration mechanisms among contemporary NLP systems by practical experiments with theoretical insights.
We fabricate four unique societies' comprised of LLM agents, where each agent is characterized by a specific trait' (easy-going or overconfident) and engages in collaboration with a distinct thinking pattern' (debate or reflection)
Our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring social psychology theories.
arXiv Detail & Related papers (2023-10-03T15:05:52Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z) - Influence of External Information on Large Language Models Mirrors
Social Cognitive Patterns [51.622612759892775]
Social cognitive theory explains how people learn and acquire knowledge through observing others.
Recent years have witnessed the rapid development of large language models (LLMs)
LLMs, as AI agents, can observe external information, which shapes their cognition and behaviors.
arXiv Detail & Related papers (2023-05-08T16:10:18Z) - Reward-Sharing Relational Networks in Multi-Agent Reinforcement Learning
as a Framework for Emergent Behavior [0.0]
We integrate social' interactions into the MARL setup through a user-defined relational network.
We examine the effects of agent-agent relations on the rise of emergent behaviors.
arXiv Detail & Related papers (2022-07-12T23:27:42Z) - Social learning spontaneously emerges by searching optimal heuristics
with deep reinforcement learning [0.0]
We employ a deep reinforcement learning model to optimize the social learning strategies of agents in a cooperative game in a multi-dimensional landscape.
We find that the agent spontaneously learns various concepts of social learning, such as copying, focusing on frequent and well-performing neighbors, self-comparison, and the importance of balancing between individual and social learning.
We demonstrate the superior performance of the reinforcement learning agent in various environments, including temporally changing environments and real social networks.
arXiv Detail & Related papers (2022-04-26T15:10:27Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
Federated learning has emerged as a technique for training ML models at the network edge by leveraging processing capabilities across the nodes that collect the data.
We advocate a new learning paradigm called fog learning which will intelligently distribute ML model training across the continuum of nodes from edge devices to cloud servers.
arXiv Detail & Related papers (2020-06-07T05:11:18Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
We will study the performance of different machine learning models when being learned on multi-modal data from different social networks.
Our initial experimental results reveal that social network choice impacts the performance.
arXiv Detail & Related papers (2020-02-05T11:10:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.