AutoStyle-TTS: Retrieval-Augmented Generation based Automatic Style Matching Text-to-Speech Synthesis
- URL: http://arxiv.org/abs/2504.10309v1
- Date: Mon, 14 Apr 2025 15:18:59 GMT
- Title: AutoStyle-TTS: Retrieval-Augmented Generation based Automatic Style Matching Text-to-Speech Synthesis
- Authors: Dan Luo, Chengyuan Ma, Weiqin Li, Jun Wang, Wei Chen, Zhiyong Wu,
- Abstract summary: This study proposes a text-to-speech (TTS) framework based on Retrieval-Augmented Generation (RAG) technology.<n>We have constructed a speech style knowledge database containing high-quality speech samples in various contexts.<n>This scheme uses embeddings, extracted by Llama, PER-LLM-Embedder,and Moka, to match with samples in the knowledge database, selecting the most appropriate speech style for synthesis.
- Score: 19.141058309358424
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the advancement of speech synthesis technology, users have higher expectations for the naturalness and expressiveness of synthesized speech. But previous research ignores the importance of prompt selection. This study proposes a text-to-speech (TTS) framework based on Retrieval-Augmented Generation (RAG) technology, which can dynamically adjust the speech style according to the text content to achieve more natural and vivid communication effects. We have constructed a speech style knowledge database containing high-quality speech samples in various contexts and developed a style matching scheme. This scheme uses embeddings, extracted by Llama, PER-LLM-Embedder,and Moka, to match with samples in the knowledge database, selecting the most appropriate speech style for synthesis. Furthermore, our empirical research validates the effectiveness of the proposed method. Our demo can be viewed at: https://thuhcsi.github.io/icme2025-AutoStyle-TTS
Related papers
- Generative Expressive Conversational Speech Synthesis [47.53014375797254]
Conversational Speech Synthesis (CSS) aims to express a target utterance with the proper speaking style in a user-agent conversation setting.
We propose a novel generative expressive CSS system, termed GPT-Talker.
We transform the multimodal information of the multi-turn dialogue history into discrete token sequences and seamlessly integrate them to form a comprehensive user-agent dialogue context.
arXiv Detail & Related papers (2024-07-31T10:02:21Z) - TextrolSpeech: A Text Style Control Speech Corpus With Codec Language
Text-to-Speech Models [51.529485094900934]
We propose TextrolSpeech, which is the first large-scale speech emotion dataset annotated with rich text attributes.
We introduce a multi-stage prompt programming approach that effectively utilizes the GPT model for generating natural style descriptions in large volumes.
To address the need for generating audio with greater style diversity, we propose an efficient architecture called Salle.
arXiv Detail & Related papers (2023-08-28T09:06:32Z) - ContextSpeech: Expressive and Efficient Text-to-Speech for Paragraph
Reading [65.88161811719353]
This work develops a lightweight yet effective Text-to-Speech system, ContextSpeech.
We first design a memory-cached recurrence mechanism to incorporate global text and speech context into sentence encoding.
We construct hierarchically-structured textual semantics to broaden the scope for global context enhancement.
Experiments show that ContextSpeech significantly improves the voice quality and prosody in paragraph reading with competitive model efficiency.
arXiv Detail & Related papers (2023-07-03T06:55:03Z) - Visual-Aware Text-to-Speech [101.89332968344102]
We present a new visual-aware text-to-speech (VA-TTS) task to synthesize speech conditioned on both textual inputs and visual feedback of the listener in face-to-face communication.
We devise a baseline model to fuse phoneme linguistic information and listener visual signals for speech synthesis.
arXiv Detail & Related papers (2023-06-21T05:11:39Z) - A Vector Quantized Approach for Text to Speech Synthesis on Real-World
Spontaneous Speech [94.64927912924087]
We train TTS systems using real-world speech from YouTube and podcasts.
Recent Text-to-Speech architecture is designed for multiple code generation and monotonic alignment.
We show thatRecent Text-to-Speech architecture outperforms existing TTS systems in several objective and subjective measures.
arXiv Detail & Related papers (2023-02-08T17:34:32Z) - Contextual Expressive Text-to-Speech [25.050361896378533]
We introduce a new task setting, Contextual Text-to-speech (CTTS)
The main idea of CTTS is that how a person speaks depends on the particular context she is in, where the context can typically be represented as text.
We construct a synthetic dataset and develop an effective framework to generate high-quality expressive speech based on the given context.
arXiv Detail & Related papers (2022-11-26T12:06:21Z) - Self-supervised Context-aware Style Representation for Expressive Speech
Synthesis [23.460258571431414]
We propose a novel framework for learning style representation from plain text in a self-supervised manner.
It leverages an emotion lexicon and uses contrastive learning and deep clustering.
Our method achieves improved results according to subjective evaluations on both in-domain and out-of-domain test sets in audiobook speech.
arXiv Detail & Related papers (2022-06-25T05:29:48Z) - GenerSpeech: Towards Style Transfer for Generalizable Out-Of-Domain
Text-to-Speech Synthesis [68.42632589736881]
This paper proposes GenerSpeech, a text-to-speech model towards high-fidelity zero-shot style transfer of OOD custom voice.
GenerSpeech decomposes the speech variation into the style-agnostic and style-specific parts by introducing two components.
Our evaluations on zero-shot style transfer demonstrate that GenerSpeech surpasses the state-of-the-art models in terms of audio quality and style similarity.
arXiv Detail & Related papers (2022-05-15T08:16:02Z) - Spoken Style Learning with Multi-modal Hierarchical Context Encoding for
Conversational Text-to-Speech Synthesis [59.27994987902646]
The study about learning spoken styles from historical conversations is still in its infancy.
Only the transcripts of the historical conversations are considered, which neglects the spoken styles in historical speeches.
We propose a spoken style learning approach with multi-modal hierarchical context encoding.
arXiv Detail & Related papers (2021-06-11T08:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.