論文の概要: MIEB: Massive Image Embedding Benchmark
- arxiv url: http://arxiv.org/abs/2504.10471v1
- Date: Mon, 14 Apr 2025 17:54:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:55:07.428134
- Title: MIEB: Massive Image Embedding Benchmark
- Title(参考訳): MIEB: ベンチマークを組み込んだ大量のイメージ
- Authors: Chenghao Xiao, Isaac Chung, Imene Kerboua, Jamie Stirling, Xin Zhang, Márton Kardos, Roman Solomatin, Noura Al Moubayed, Kenneth Enevoldsen, Niklas Muennighoff,
- Abstract要約: 本稿では、画像と画像テキストの埋め込みモデルの性能を評価するために、MIEB(Massive Image Embedding Benchmark)を提案する。
MIEBは、130のタスクにまたがる38の言語にまたがる。
ベンチマークで50のモデルをベンチマークしたところ、すべてのタスクカテゴリで1つのメソッドが支配的でないことが分かりました。
- 参考スコア(独自算出の注目度): 12.080155288744594
- License:
- Abstract: Image representations are often evaluated through disjointed, task-specific protocols, leading to a fragmented understanding of model capabilities. For instance, it is unclear whether an image embedding model adept at clustering images is equally good at retrieving relevant images given a piece of text. We introduce the Massive Image Embedding Benchmark (MIEB) to evaluate the performance of image and image-text embedding models across the broadest spectrum to date. MIEB spans 38 languages across 130 individual tasks, which we group into 8 high-level categories. We benchmark 50 models across our benchmark, finding that no single method dominates across all task categories. We reveal hidden capabilities in advanced vision models such as their accurate visual representation of texts, and their yet limited capabilities in interleaved encodings and matching images and texts in the presence of confounders. We also show that the performance of vision encoders on MIEB correlates highly with their performance when used in multimodal large language models. Our code, dataset, and leaderboard are publicly available at https://github.com/embeddings-benchmark/mteb.
- Abstract(参考訳): 画像表現は、しばしば非結合なタスク固有のプロトコルを通して評価され、モデル能力の断片化された理解につながる。
例えば、クラスタリング画像に適応する画像埋め込みモデルが、テキストの一部が与えられた関係画像を取得するのに等しく優れているかどうかは不明である。
我々は、これまでで最も広い範囲で画像と画像テキストの埋め込みモデルの性能を評価するために、MIEB(Massive Image Embedding Benchmark)を導入する。
MIEBは、130のタスクにまたがる38の言語にまたがる。
ベンチマークで50のモデルをベンチマークしたところ、すべてのタスクカテゴリで1つのメソッドが支配的でないことが分かりました。
我々は、テキストの正確な視覚表現のような高度な視覚モデルにおける隠れた能力と、共同創設者の存在下でのインターリーブエンコーディングや画像とテキストのマッチングにおいて、まだ限られた能力を明らかにする。
また、MIEB上での視覚エンコーダの性能は、マルチモーダルな大言語モデルでの使用時の性能と高い相関性を示す。
私たちのコード、データセット、およびリーダーボードはhttps://github.com/embeddings-benchmark/mteb.comで公開されています。
関連論文リスト
- FLAIR: VLM with Fine-grained Language-informed Image Representations [49.2684130383925]
FLAIRは、局所的な画像埋め込みを学ぶために、長く詳細な画像記述を利用するアプローチである。
実験では,30M画像テキスト対を用いたFLAIRによる微細な視覚情報収集の有効性を実証した。
論文 参考訳(メタデータ) (2024-12-04T18:56:04Z) - ARMADA: Attribute-Based Multimodal Data Augmentation [93.05614922383822]
Attribute-based Multimodal Data Augmentation (ARMADA) は、知識誘導による視覚属性の操作による新しいマルチモーダルデータ拡張手法である。
ARMADAは、新しいマルチモーダルデータ生成フレームワークである。 (i) 意味的に一貫性があるがユニークな画像-テキストペア生成のために、シンボリックKBから知識基底属性を抽出する。
これはまた、解釈可能性の向上と現実世界の接地のために外部の知識プロキシを活用する必要性を強調している。
論文 参考訳(メタデータ) (2024-08-19T15:27:25Z) - TRINS: Towards Multimodal Language Models that Can Read [61.17806538631744]
TRINSはText-RichイメージINStructionデータセットである。
39,153の画像、キャプション、102,437の質問が含まれている。
本稿では,画像中のテキスト内容の理解に長けたLanguage-vision Reading Assistant(LaRA)を提案する。
論文 参考訳(メタデータ) (2024-06-10T18:52:37Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
我々は、自由形式のテキストで提供されるコンテキストを用いて視覚的理解を高めるモデルの有効性を評価するために、CODISと名付けられた新しいベンチマークを導入する。
以上の結果から,MLLMは必ずしも人体性能に劣っていることが示唆された。
このことは、MLLMが視覚を文脈依存的に理解する能力を高めることの必要性を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-21T08:21:12Z) - JourneyDB: A Benchmark for Generative Image Understanding [89.02046606392382]
生成画像の領域に適合する包括的データセットであるJourneyDBを導入する。
精巧にキュレートされたデータセットは、400万の異なる高品質な画像で構成されています。
本データセットでは,生成した画像の理解性能を評価するための4つのベンチマークを考案した。
論文 参考訳(メタデータ) (2023-07-03T02:39:08Z) - Generating Images with Multimodal Language Models [78.6660334861137]
本稿では,凍結したテキストのみの大規模言語モデルを,事前学習した画像エンコーダとデコーダモデルで融合する手法を提案する。
本モデルでは,画像検索,新しい画像生成,マルチモーダル対話など,多モーダルな機能群を示す。
論文 参考訳(メタデータ) (2023-05-26T19:22:03Z) - Rethinking Benchmarks for Cross-modal Image-text Retrieval [44.31783230767321]
クロスモーダルな意味理解とマッチングは、画像テキスト検索において大きな課題である。
本稿では,2つの共通ベンチマークをレビューし,そのモデルが細粒度横断的セマンティックマッチングにおける真の能力を評価するには不十分であることを考察する。
本研究では, 粗粒度を細粒度に微粒化するための半自動改質手法を提案する。
その結果、最先端のモデルでさえ、きめ細かいセマンティック理解を改善する余地があることが判明した。
論文 参考訳(メタデータ) (2023-04-21T09:07:57Z) - Deep Multimodal Image-Text Embeddings for Automatic Cross-Media
Retrieval [0.0]
視覚と言語表現を同時に学習するための,エンドツーエンドの深層マルチモーダル畳み込み再帰ネットワークを提案する。
このモデルは、どのペアがマッチ(正)か、どれがミスマッチ(負)かをヒンジベースの三重項ランキングを用いて学習する。
論文 参考訳(メタデータ) (2020-02-23T23:58:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。