Graph-based Approaches and Functionalities in Retrieval-Augmented Generation: A Comprehensive Survey
- URL: http://arxiv.org/abs/2504.10499v1
- Date: Tue, 08 Apr 2025 03:52:05 GMT
- Title: Graph-based Approaches and Functionalities in Retrieval-Augmented Generation: A Comprehensive Survey
- Authors: Zulun Zhu, Tiancheng Huang, Kai Wang, Junda Ye, Xinghe Chen, Siqiang Luo,
- Abstract summary: Large language models (LLMs) struggle with the factual error during inference due to the lack of sufficient training data and the most updated knowledge.<n>Retrieval-Augmented Generation (RAG) has gained attention as a promising solution to address the limitation of LLMs.<n>This survey offers a novel perspective on the functionality of graphs within RAG and their impact on enhancing performance.
- Score: 15.60128530639056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) struggle with the factual error during inference due to the lack of sufficient training data and the most updated knowledge, leading to the hallucination problem. Retrieval-Augmented Generation (RAG) has gained attention as a promising solution to address the limitation of LLMs, by retrieving relevant information from external source to generate more accurate answers to the questions. Given the pervasive presence of structured knowledge in the external source, considerable strides in RAG have been made to employ the techniques related to graphs and achieve more complex reasoning based on the topological information between knowledge entities. However, there is currently neither unified review examining the diverse roles of graphs in RAG, nor a comprehensive resource to help researchers navigate and contribute to this evolving field. This survey offers a novel perspective on the functionality of graphs within RAG and their impact on enhancing performance across a wide range of graph-structured data. It provides a detailed breakdown of the roles that graphs play in RAG, covering database construction, algorithms, pipelines, and tasks. Finally, it identifies current challenges and outline future research directions, aiming to inspire further developments in this field. Our graph-centered analysis highlights the commonalities and differences in existing methods, setting the stage for future researchers in areas such as graph learning, database systems, and natural language processing.
Related papers
- Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook [85.43403500874889]
Retrieval-augmented generation (RAG) has emerged as a pivotal technique in artificial intelligence (AI)
Recent advancements in RAG for embodied AI, with a particular focus on applications in planning, task execution, multimodal perception, interaction, and specialized domains.
arXiv Detail & Related papers (2025-03-23T10:33:28Z) - A Survey on Knowledge-Oriented Retrieval-Augmented Generation [45.65542434522205]
Retrieval-Augmented Generation (RAG) has gained significant attention in recent years.
RAG combines large-scale retrieval systems with generative models.
We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge.
arXiv Detail & Related papers (2025-03-11T01:59:35Z) - Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
Large language models (LLMs) are designed to process and comprehend natural language, making both approaches highly effective and widely adopted.
Recent research has focused on graph foundation models (GFMs)
GFMs integrate the strengths of GNNs and LLMs to model complex RS problems more efficiently by leveraging the graph-based structure of user-item relationships alongside textual understanding.
arXiv Detail & Related papers (2025-02-12T12:13:51Z) - Out-of-Distribution Detection on Graphs: A Survey [58.47395497985277]
Graph out-of-distribution (GOOD) detection focuses on identifying graph data that deviates from the distribution seen during training.
We categorize existing methods into four types: enhancement-based, reconstruction-based, information propagation-based, and classification-based approaches.
We discuss practical applications and theoretical foundations, highlighting the unique challenges posed by graph data.
arXiv Detail & Related papers (2025-02-12T04:07:12Z) - A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models [15.190033208947051]
Retrieval-augmented generation (RAG) has emerged as a promising solution to customize large language models (LLMs)<n>This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG)
arXiv Detail & Related papers (2025-01-21T06:25:21Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.<n>Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.<n>Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - Deep Graph Anomaly Detection: A Survey and New Perspectives [86.84201183954016]
Graph anomaly detection (GAD) aims to identify unusual graph instances (nodes, edges, subgraphs, or graphs)
Deep learning approaches, graph neural networks (GNNs) in particular, have been emerging as a promising paradigm for GAD.
arXiv Detail & Related papers (2024-09-16T03:05:11Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining.
This paper provides the first comprehensive overview of GraphRAG methodologies.
We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation.
arXiv Detail & Related papers (2024-08-15T12:20:24Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.<n>Large foundation models, such as large language models, have revolutionized various natural language processing tasks.<n>This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.