HeteRAG: A Heterogeneous Retrieval-augmented Generation Framework with Decoupled Knowledge Representations
- URL: http://arxiv.org/abs/2504.10529v1
- Date: Sat, 12 Apr 2025 13:12:54 GMT
- Title: HeteRAG: A Heterogeneous Retrieval-augmented Generation Framework with Decoupled Knowledge Representations
- Authors: Peiru Yang, Xintian Li, Zhiyang Hu, Jiapeng Wang, Jinhua Yin, Huili Wang, Lizhi He, Shuai Yang, Shangguang Wang, Yongfeng Huang, Tao Qi,
- Abstract summary: Retrieval-augmented generation (RAG) methods can enhance the performance of LLMs.<n>Existing RAG methods typically employ identical representations of knowledge chunks for both retrieval and generation.<n>We propose a heterogeneous RAG framework (myname) that decouples the representations of knowledge chunks for retrieval and generation.
- Score: 36.61614799098233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-augmented generation (RAG) methods can enhance the performance of LLMs by incorporating retrieved knowledge chunks into the generation process. In general, the retrieval and generation steps usually have different requirements for these knowledge chunks. The retrieval step benefits from comprehensive information to improve retrieval accuracy, whereas excessively long chunks may introduce redundant contextual information, thereby diminishing both the effectiveness and efficiency of the generation process. However, existing RAG methods typically employ identical representations of knowledge chunks for both retrieval and generation, resulting in suboptimal performance. In this paper, we propose a heterogeneous RAG framework (\myname) that decouples the representations of knowledge chunks for retrieval and generation, thereby enhancing the LLMs in both effectiveness and efficiency. Specifically, we utilize short chunks to represent knowledge to adapt the generation step and utilize the corresponding chunk with its contextual information from multi-granular views to enhance retrieval accuracy. We further introduce an adaptive prompt tuning method for the retrieval model to adapt the heterogeneous retrieval augmented generation process. Extensive experiments demonstrate that \myname achieves significant improvements compared to baselines.
Related papers
- Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.<n>Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.<n>We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - SePer: Measure Retrieval Utility Through The Lens Of Semantic Perplexity Reduction [20.6787276745193]
We introduce an automatic evaluation method that measures retrieval quality through the lens of information gain within the RAG framework.
We quantify the utility of retrieval by the extent to which it reduces semantic perplexity post-retrieval.
arXiv Detail & Related papers (2025-03-03T12:37:34Z) - Detecting Knowledge Boundary of Vision Large Language Models by Sampling-Based Inference [78.08901120841833]
We propose a method to detect the knowledge boundary of Visual Large Language Models (VLLMs)
We show that our method successfully depicts a VLLM's knowledge boundary based on which we are able to reduce indiscriminate retrieval while maintaining or improving the performance.
arXiv Detail & Related papers (2025-02-25T09:32:08Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources.<n>This paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval.
arXiv Detail & Related papers (2024-12-20T06:58:32Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG) mitigates factual errors and hallucinations in Large Language Models (LLMs) for question-answering (QA)<n>We develop DeepNote, an adaptive RAG framework that achieves in-depth and robust exploration of knowledge sources through note-centric adaptive retrieval.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
A common way to extend the memory of large language models (LLMs) is by retrieval augmented generation (RAG)
We propose a novel simple optimization metric based on relevant information gain, a probabilistic measure of the total information relevant to a query for a set of retrieved results.
When used as a drop-in replacement for the retrieval component of a RAG system, this method yields state-of-the-art performance on question answering tasks.
arXiv Detail & Related papers (2024-07-16T18:09:21Z) - Distillation Enhanced Generative Retrieval [96.69326099136289]
Generative retrieval is a promising new paradigm in text retrieval that generates identifier strings of relevant passages as the retrieval target.
In this work, we identify a viable direction to further enhance generative retrieval via distillation and propose a feasible framework, named DGR.
We conduct experiments on four public datasets, and the results indicate that DGR achieves state-of-the-art performance among the generative retrieval methods.
arXiv Detail & Related papers (2024-02-16T15:48:24Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented generation (RAG) relies heavily on relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong.
We propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation.
CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches.
arXiv Detail & Related papers (2024-01-29T04:36:39Z) - Learning to Rank in Generative Retrieval [62.91492903161522]
Generative retrieval aims to generate identifier strings of relevant passages as the retrieval target.
We propose a learning-to-rank framework for generative retrieval, dubbed LTRGR.
This framework only requires an additional learning-to-rank training phase to enhance current generative retrieval systems.
arXiv Detail & Related papers (2023-06-27T05:48:14Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.