論文の概要: Physics-Informed Neural Networks for Enhanced Interface Preservation in Lattice Boltzmann Multiphase Simulations
- arxiv url: http://arxiv.org/abs/2504.10539v1
- Date: Sun, 13 Apr 2025 08:29:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:07:06.308190
- Title: Physics-Informed Neural Networks for Enhanced Interface Preservation in Lattice Boltzmann Multiphase Simulations
- Title(参考訳): 格子ボルツマン多相シミュレーションにおける界面保存強化のための物理インフォームニューラルネットワーク
- Authors: Yue Li,
- Abstract要約: 本稿では物理インフォームドニューラルネットワーク(PINN)を用いた多相格子ボルツマン法(LBM)シミュレーションにおけるシャープインタフェースの保存方法の改善について述べる。
界面拡散は多相LBMにおいて一般的な課題であり、界面力学が重要となる現象のシミュレーションにおいて精度が低下する。
シミュレーションの物理的精度を保ちながらインタフェースのシャープさを維持するPINN-LBMフレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.0822320577783335
- License:
- Abstract: This paper presents an improved approach for preserving sharp interfaces in multiphase Lattice Boltzmann Method (LBM) simulations using Physics-Informed Neural Networks (PINNs). Interface diffusion is a common challenge in multiphase LBM, leading to reduced accuracy in simulating phenomena where interfacial dynamics are critical. We propose a coupled PINN-LBM framework that maintains interface sharpness while preserving the physical accuracy of the simulation. Our approach is validated through droplet simulations, with quantitative metrics measuring interface width, maximum gradient, phase separation, effective interface width, and interface energy. The enhanced visualization techniques employed in this work clearly demonstrate the superior performance of PINN-LBM over standard LBM for multiphase simulations, particularly in maintaining well-defined interfaces throughout the simulation. We provide a comprehensive analysis of the results, showcasing how the neural network integration effectively counteracts numerical diffusion, while maintaining physical consistency with the underlying fluid dynamics.
- Abstract(参考訳): 本稿では,多相格子ボルツマン法(LBM)シミュレーションにおいて,物理インフォームドニューラルネットワーク(PINN)を用いたシャープインタフェースの保存方法の改善について述べる。
界面拡散は多相LBMにおいて一般的な課題であり、界面力学が重要となる現象のシミュレーションにおいて精度が低下する。
シミュレーションの物理的精度を保ちながらインタフェースのシャープさを維持するPINN-LBMフレームワークを提案する。
本手法は, 界面幅, 最大勾配, 位相分離, 有効界面幅, 界面エネルギーを定量的に測定し, 液滴シミュレーションにより検証した。
本研究では,多相シミュレーションにおける標準LBMよりもPINN-LBMの方が優れた性能を示した。
ニューラルネットワーク統合が数値拡散を効果的に抑制し、基礎となる流体力学との物理的整合性を維持しながら、結果を総合的に分析する。
関連論文リスト
- HyperFLINT: Hypernetwork-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization [26.472939569860607]
HyperFLINTは、流れ場を推定し、時間的に補間し、アンサンブルデータにおけるパラメータ空間探索を容易にする、新しいディープラーニングベースのアプローチである。
一連の実験では、HyperFLINTのフロー場推定性能が大幅に向上し、パラメータ空間探索が可能になった。
論文 参考訳(メタデータ) (2024-12-05T12:01:20Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Near-realtime Facial Animation by Deep 3D Simulation Super-Resolution [7.14576106770047]
本稿では,低コストでリアルタイムな物理シミュレーションによって生み出す顔のパフォーマンスを効率よく,現実的に向上させるニューラルネットワークに基づくシミュレーションフレームワークを提案する。
顔のアニメーションをこのようなシミュレーション領域の例に用いて,2つのシミュレータで同じ筋の運動制御と骨格のポーズを単純にダイヤルすることで,この意味の一致を創り出すことができる。
提案するニューラルネットワーク超解像フレームワークは,このトレーニングセットから未確認表現を一般化し,リアルタイム変種における解像度の制限やコスト削減近似による2つのシミュレーション間の不一致をモデル化するための補償を行うとともに,意味記述子やパラメータを必要としない。
論文 参考訳(メタデータ) (2023-05-05T00:09:24Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Hybrid Physical-Neural ODEs for Fast N-body Simulations [0.22419496088582863]
我々は、宇宙論的N体シミュレーションのためのParticle-Meshスキームから生じる小規模近似を補正する新しいスキームを提案する。
提案手法は相互相関係数においてPGDよりも優れており,シミュレーション設定の変化に対してより堅牢であることがわかった。
論文 参考訳(メタデータ) (2022-07-12T13:06:06Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Deep Learning Interfacial Momentum Closures in Coarse-Mesh CFD Two-Phase
Flow Simulation Using Validation Data [5.099083753474628]
FSM(Feature-Similarity Measurement)を開発し, 粗面CFD法により二相流のシミュレーション性能を向上させる。
FSMは界面閉鎖の選択に関係なく粗いメッシュCFDモデルの予測を大幅に改善することができる。
論文 参考訳(メタデータ) (2020-05-07T21:25:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。