論文の概要: AB-Cache: Training-Free Acceleration of Diffusion Models via Adams-Bashforth Cached Feature Reuse
- arxiv url: http://arxiv.org/abs/2504.10540v1
- Date: Sun, 13 Apr 2025 08:29:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:12:24.741844
- Title: AB-Cache: Training-Free Acceleration of Diffusion Models via Adams-Bashforth Cached Feature Reuse
- Title(参考訳): ABキャッシュ:Adams-Bashforth Cached機能再利用による拡散モデルのトレーニングフリー加速
- Authors: Zichao Yu, Zhen Zou, Guojiang Shao, Chengwei Zhang, Shengze Xu, Jie Huang, Feng Zhao, Xiaodong Cun, Wenyi Zhang,
- Abstract要約: 拡散モデルは生成的タスクにおいて顕著に成功したが、反復的認知過程は推論を遅くする。
本稿では,第2次Adams-Bashforth法を用いて認知過程を解析することにより理論的に理解する。
キャッシュされた結果を直接再利用する代わりに,拡散モデルに対するキャッシングに基づく新しい高速化手法を提案する。
- 参考スコア(独自算出の注目度): 19.13826316844611
- License:
- Abstract: Diffusion models have demonstrated remarkable success in generative tasks, yet their iterative denoising process results in slow inference, limiting their practicality. While existing acceleration methods exploit the well-known U-shaped similarity pattern between adjacent steps through caching mechanisms, they lack theoretical foundation and rely on simplistic computation reuse, often leading to performance degradation. In this work, we provide a theoretical understanding by analyzing the denoising process through the second-order Adams-Bashforth method, revealing a linear relationship between the outputs of consecutive steps. This analysis explains why the outputs of adjacent steps exhibit a U-shaped pattern. Furthermore, extending Adams-Bashforth method to higher order, we propose a novel caching-based acceleration approach for diffusion models, instead of directly reusing cached results, with a truncation error bound of only \(O(h^k)\) where $h$ is the step size. Extensive validation across diverse image and video diffusion models (including HunyuanVideo and FLUX.1-dev) with various schedulers demonstrates our method's effectiveness in achieving nearly $3\times$ speedup while maintaining original performance levels, offering a practical real-time solution without compromising generation quality.
- Abstract(参考訳): 拡散モデルは、生成的タスクにおいて顕著な成功を示しているが、反復的な認知過程は推論の速度を遅くし、実用性を制限している。
既存の加速度法は、キャッシュ機構を通じて隣接するステップ間のよく知られたU字型類似パターンを利用するが、理論的な基礎が欠如しており、単純な計算の再利用に依存しており、しばしば性能劣化につながる。
本研究では,2階のAdams-Bashforth法を用いてデノナイジング過程を解析し,連続ステップの出力間の線形関係を明らかにすることによって理論的理解を提供する。
この分析は、隣接するステップの出力がU字型パターンを示す理由を説明する。
さらに、Adams-Bashforth法を高次に拡張し、キャッシュされた結果を直接再利用する代わりに、$h$ がステップサイズであるような \(O(h^k)\) のみのトランケーション誤差で、拡散モデルに対する新しいキャッシングベースの加速度手法を提案する。
各種スケジューラを用いた多様な画像拡散モデル(HunyuanVideo や FLUX.1-dev など)の広範な検証により,オリジナル性能を維持しながら3ドル近いスピードアップを実現し,生成品質を損なうことなく実用的なリアルタイムソリューションを提供することが実証された。
関連論文リスト
- Fast Solvers for Discrete Diffusion Models: Theory and Applications of High-Order Algorithms [31.42317398879432]
現在の推論アプローチは主に、正確なシミュレーションと$tau$-leapingのような近似メソッドの2つのカテゴリに分類される。
本研究では,高次数値推論スキームの最初の拡張を離散拡散モデルに合わせることで,後者のカテゴリを推し進める。
提案手法を厳密に解析し,KL分散における$theta$-trapezoidal法の2次精度を確立する。
論文 参考訳(メタデータ) (2025-02-01T00:25:21Z) - DiP-GO: A Diffusion Pruner via Few-step Gradient Optimization [22.546989373687655]
本稿では,よりインテリジェントで微分可能なプルーナーを用いて,効率的な拡散モデルを導出する新しいプルーニング法を提案する。
提案手法はSD-1.5の4.4倍の高速化を実現し,従来の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T12:18:24Z) - Efficient Diffusion Model for Image Restoration by Residual Shifting [63.02725947015132]
本研究では,画像復元のための新しい,効率的な拡散モデルを提案する。
提案手法は,推論中の後処理の高速化を回避し,関連する性能劣化を回避する。
提案手法は,3つの古典的IRタスクにおける現在の最先端手法よりも優れた,あるいは同等の性能を実現する。
論文 参考訳(メタデータ) (2024-03-12T05:06:07Z) - DeepCache: Accelerating Diffusion Models for Free [65.02607075556742]
DeepCacheは、モデルアーキテクチャの観点から拡散モデルを加速するトレーニング不要のパラダイムである。
DeepCacheは拡散モデルのシーケンシャルなデノナイジングステップで観測される時間的冗長性に乗じている。
同じスループットで、DeepCacheはDDIMやPLMSで、事実上同等または極端に改善された結果を達成する。
論文 参考訳(メタデータ) (2023-12-01T17:01:06Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
拡散モデルに基づく超解像(SR)法は有望な結果を示す。
しかし、それらの実践的応用は、必要な推論ステップのかなりの数によって妨げられている。
本稿では,SinSRという単一ステップのSR生成を実現するための,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:21:29Z) - DiffuSeq-v2: Bridging Discrete and Continuous Text Spaces for
Accelerated Seq2Seq Diffusion Models [58.450152413700586]
ガウス空間に基づく離散突然変異を再構成する学習において拡散モデルを容易にする軟吸収状態を導入する。
我々は、サンプリングプロセスの高速化のために、連続空間内で最先端のODEソルバを用いている。
提案手法は, トレーニング収束率を4倍に向上させ, 類似品質のサンプルを800倍高速に生成する。
論文 参考訳(メタデータ) (2023-10-09T15:29:10Z) - Single and Few-step Diffusion for Generative Speech Enhancement [18.487296462927034]
拡散モデルは音声強調において有望な結果を示した。
本稿では,2段階の学習手法を用いて,これらの制約に対処する。
提案手法は定常的な性能を保ち,従って拡散ベースラインよりも大きく向上することを示す。
論文 参考訳(メタデータ) (2023-09-18T11:30:58Z) - Fast Diffusion EM: a diffusion model for blind inverse problems with
application to deconvolution [0.0]
現在の手法では、劣化が知られており、復元と多様性の点で印象的な結果をもたらすと仮定している。
本研究では、これらのモデルの効率を活用し、復元された画像と未知のパラメータを共同で推定する。
本手法は,拡散モデルから抽出したサンプルを用いて,問題の対数類似度を近似し,未知のモデルパラメータを推定する方法とを交互に比較する。
論文 参考訳(メタデータ) (2023-09-01T06:47:13Z) - Post-Processing Temporal Action Detection [134.26292288193298]
時間的行動検出(TAD)法は、通常、入力された可変長のビデオを固定長のスニペット表現シーケンスに変換する際に、前処理のステップを踏む。
この前処理ステップは、ビデオを時間的にダウンサンプリングし、推論の解像度を低減し、元の時間分解における検出性能を阻害する。
モデルの再設計や再学習を伴わない新しいモデル非依存のポストプロセッシング手法を提案する。
論文 参考訳(メタデータ) (2022-11-27T19:50:37Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
ディープラーニングに基づくアプローチの最近の発展は、DiffIRのサブ秒間実行を実現している。
本稿では,中間定常速度場を機能的に構成する簡易な反復スキームを提案する。
次に、任意の順序の正規化項を用いて、これらの速度場に滑らかさを課す凸最適化モデルを提案する。
論文 参考訳(メタデータ) (2021-09-26T19:56:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。