Improving In-Context Learning with Reasoning Distillation
- URL: http://arxiv.org/abs/2504.10647v1
- Date: Mon, 14 Apr 2025 18:59:10 GMT
- Title: Improving In-Context Learning with Reasoning Distillation
- Authors: Nafis Sadeq, Xin Xu, Zhouhang Xie, Julian McAuley, Byungkyu Kang, Prarit Lamba, Xiang Gao,
- Abstract summary: Language models rely on semantic priors to perform in-context learning.<n>We propose ReDis, a reasoning distillation technique designed to improve the inductive reasoning capabilities of language models.
- Score: 25.377625891065236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models rely on semantic priors to perform in-context learning, which leads to poor performance on tasks involving inductive reasoning. Instruction-tuning methods based on imitation learning can superficially enhance the in-context learning performance of language models, but they often fail to improve the model's understanding of the underlying rules that connect inputs and outputs in few-shot demonstrations. We propose ReDis, a reasoning distillation technique designed to improve the inductive reasoning capabilities of language models. Through a careful combination of data augmentation, filtering, supervised fine-tuning, and alignment, ReDis achieves significant performance improvements across a diverse range of tasks, including 1D-ARC, List Function, ACRE, and MiniSCAN. Experiments on three language model backbones show that ReDis outperforms equivalent few-shot prompting baselines across all tasks and even surpasses the teacher model, GPT-4o, in some cases. ReDis, based on the LLaMA-3 backbone, achieves relative improvements of 23.2%, 2.8%, and 66.6% over GPT-4o on 1D-ARC, ACRE, and MiniSCAN, respectively, within a similar hypothesis search space. The code, dataset, and model checkpoints will be made available at https://github.com/NafisSadeq/reasoning-distillation.git.
Related papers
- Phi-4-Mini-Reasoning: Exploring the Limits of Small Reasoning Language Models in Math [135.1260782461186]
Chain-of-Thought (CoT) significantly enhances formal reasoning capabilities in Large Language Models (LLMs)
However, improving reasoning in Small Language Models (SLMs) remains challenging due to their limited model capacity.
We present a systematic training recipe for SLMs that consists of four steps: (1) large-scale mid-training on diverse distilled long-CoT data, (2) supervised fine-tuning on high-quality long-CoT data, (3) Rollout DPO leveraging a carefully curated preference dataset, and (4) Reinforcement Learning (RL) with Verifiable Reward.
arXiv Detail & Related papers (2025-04-30T00:04:35Z) - Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking [21.23826888841565]
We present a novel approach for training small language models for reasoning-intensive document ranking.<n>We use web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations.<n>Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches.
arXiv Detail & Related papers (2025-04-04T21:27:48Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.<n>Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Feature Alignment-Based Knowledge Distillation for Efficient Compression of Large Language Models [4.737806982257592]
This study proposes a knowledge distillation algorithm based on large language models and feature alignment.<n>The proposed model performs very close to the state-of-the-art GPT-4 model in terms of evaluation indicators such as perplexity, BLEU, ROUGE, and CER.
arXiv Detail & Related papers (2024-12-27T04:37:06Z) - The Surprising Effectiveness of Test-Time Training for Few-Shot Learning [59.309477460893916]
Language models (LMs) have shown impressive performance on tasks within their training distribution, but often struggle with structurally novel tasks.<n>We investigate the effectiveness of test-time training (TTT) as a mechanism for improving LMs' reasoning and few-shot learning capabilities.<n>Our findings highlight the limitations of in-context learning for novel tasks and demonstrate the potential of test-time training to enhance language model adaptability.
arXiv Detail & Related papers (2024-11-11T18:59:45Z) - Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models [7.632217365130212]
Large Language Models (LLMs) have demonstrated exceptional capabilities across various machine learning (ML) tasks.
These models can produce hallucinations, particularly in domains with incomplete knowledge.
We introduce DualChecker, an innovative framework designed to mitigate hallucinations and improve the performance of both teacher and student models.
arXiv Detail & Related papers (2024-08-22T12:04:04Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - Learning to Refine with Fine-Grained Natural Language Feedback [81.70313509881315]
We propose looking at refinement with feedback as a composition of three distinct LLM competencies.
A key property of the proposed Detect, Critique, Refine ("DCR") method is that the step 2 critique model can give fine-grained feedback about errors.
We show that models of different capabilities benefit from refining with DCR on the task of improving factual consistency of document grounded summaries.
arXiv Detail & Related papers (2024-07-02T16:15:01Z) - Mixture-of-Experts Meets Instruction Tuning:A Winning Combination for
Large Language Models [125.91897197446379]
We find that MoE models benefit more from instruction tuning than dense models.
Our most powerful model, FLAN-MOE-32B, surpasses the performance of FLAN-PALM-62B on four benchmark tasks.
arXiv Detail & Related papers (2023-05-24T04:22:26Z) - A Cohesive Distillation Architecture for Neural Language Models [0.0]
A recent trend in Natural Language Processing is the exponential growth in Language Model (LM) size.
This study investigates methods for Knowledge Distillation (KD) to provide efficient alternatives to large-scale models.
arXiv Detail & Related papers (2023-01-12T08:01:53Z) - Finetuned Language Models Are Zero-Shot Learners [67.70352207685558]
We show that instruction tuning boosts zero-shot performance on unseen tasks.
We take a 137B parameter pretrained language model and instruction-tune it on over 60 NLP tasks verbalized via natural language instruction templates.
We evaluate this instruction-tuned model, which we call FLAN, on unseen task types.
arXiv Detail & Related papers (2021-09-03T17:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.