論文の概要: FuzzSense: Towards A Modular Fuzzing Framework for Autonomous Driving Software
- arxiv url: http://arxiv.org/abs/2504.10717v1
- Date: Mon, 14 Apr 2025 21:17:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:05:23.747703
- Title: FuzzSense: Towards A Modular Fuzzing Framework for Autonomous Driving Software
- Title(参考訳): FuzzSense: 自動運転ソフトウェアのためのモジュラファジィファジィフレームワーク
- Authors: Andrew Roberts, Lorenz Teply, Mert D. Pese, Olaf Maennel, Mohammad Hamad, Sebastian Steinhorst,
- Abstract要約: 本研究は,多様なADファジリングツールをアンサンブルするために設計された,モジュール式でブラックボックスな突然変異ベースのファジリングフレームワークであるFuzzSenseを提案する。
FuzzSenseの実用性を検証するために、プラグインとしてLiDARセンサーファザが開発され、新しいADシミュレーションプラットフォームであるAWSIMとAutoware.Universe ADソフトウェアプラットフォームでファザが実装された。
- 参考スコア(独自算出の注目度): 1.3359321655273804
- License:
- Abstract: Fuzz testing to find semantic control vulnerabilities is an essential activity to evaluate the robustness of autonomous driving (AD) software. Whilst there is a preponderance of disparate fuzzing tools that target different parts of the test environment, such as the scenario, sensors, and vehicle dynamics, there is a lack of fuzzing strategies that ensemble these fuzzers to enable concurrent fuzzing, utilizing diverse techniques and targets. This research proposes FuzzSense, a modular, black-box, mutation-based fuzzing framework that is architected to ensemble diverse AD fuzzing tools. To validate the utility of FuzzSense, a LiDAR sensor fuzzer was developed as a plug-in, and the fuzzer was implemented in the new AD simulation platform AWSIM and Autoware.Universe AD software platform. The results demonstrated that FuzzSense was able to find vulnerabilities in the new Autoware.Universe software. We contribute to FuzzSense open-source with the aim of initiating a conversation in the community on the design of AD-specific fuzzers and the establishment of a community fuzzing framework to better target the diverse technology base of autonomous vehicles.
- Abstract(参考訳): セマンティックコントロールの脆弱性を見つけるためのファズテストは、自律運転(AD)ソフトウェアの堅牢性を評価する上で不可欠な活動である。
シナリオ、センサー、車両力学など、テスト環境のさまざまな部分を対象とする異なるファジィングツールが優先されているが、ファジィング戦略が欠如しており、これらファジィアをアンサンブルして同時ファジィングを可能にし、多様な技術や目標を利用することができる。
本研究は,多様なADファジリングツールをアンサンブルするために設計された,モジュール式でブラックボックスな突然変異ベースのファジリングフレームワークであるFuzzSenseを提案する。
FuzzSenseの実用性を検証するために、プラグインとしてLiDARセンサーファザが開発され、新しいADシミュレーションプラットフォームであるAWSIMとAutoware.Universe ADソフトウェアプラットフォームでファザが実装された。
結果は、FuzzSenseが新しいAutoware.Universeソフトウェアに脆弱性を発見できることを示した。
我々は、AD固有のファジィアの設計に関するコミュニティでの会話の開始と、自動運転車の多様な技術基盤をより適切にターゲットするコミュニティファジィングフレームワークの確立を目的として、FzzSenseオープンソースに貢献する。
関連論文リスト
- CKGFuzzer: LLM-Based Fuzz Driver Generation Enhanced By Code Knowledge Graph [29.490817477791357]
本稿では,コード知識グラフによって駆動され,インテリジェントエージェントシステムによって駆動されるファズテスト手法を提案する。
コードナレッジグラフは、そのグラフの各ノードがコードエンティティを表す、プログラム間解析によって構築される。
CKGFuzzerは最先端技術と比較してコードカバレッジが平均8.73%向上した。
論文 参考訳(メタデータ) (2024-11-18T12:41:16Z) - FuzzWiz -- Fuzzing Framework for Efficient Hardware Coverage [2.1626093085892144]
FuzzWizという自動ハードウェアファジリングフレームワークを作成しました。
RTL設計モジュールのパース、C/C++モデルへの変換、アサーション、リンク、ファジングによるジェネリックテストベンチの作成を含む。
ベンチマークの結果,従来のシミュレーション回帰手法の10倍の速度でカバー範囲の約90%を達成できた。
論文 参考訳(メタデータ) (2024-10-23T10:06:08Z) - CAFuser: Condition-Aware Multimodal Fusion for Robust Semantic Perception of Driving Scenes [56.52618054240197]
本研究では,運転シーンのロバストな意味認識のための条件対応型マルチモーダル融合手法を提案する。
CAFuserは、RGBカメラ入力を用いて環境条件を分類し、コンディショントークンを生成する。
我々のモデルは、特に悪条件シナリオにおいて、ロバスト性と精度を著しく向上させる。
論文 参考訳(メタデータ) (2024-10-14T17:56:20Z) - G-Fuzz: A Directed Fuzzing Framework for gVisor [48.85077340822625]
G-FuzzはgVisor用のファジィフレームワークである。
G-Fuzzは業界に展開され、深刻な脆弱性を複数発見している。
論文 参考訳(メタデータ) (2024-09-20T01:00:22Z) - FuzzCoder: Byte-level Fuzzing Test via Large Language Model [46.18191648883695]
我々は,攻撃を成功させることで,入力ファイルのパターンを学習するために,微調整された大言語モデル(FuzzCoder)を採用することを提案する。
FuzzCoderは、プログラムの異常な動作を引き起こすために、入力ファイル内の突然変異位置と戦略位置を予測することができる。
論文 参考訳(メタデータ) (2024-09-03T14:40:31Z) - Exploring Latent Pathways: Enhancing the Interpretability of Autonomous Driving with a Variational Autoencoder [79.70947339175572]
バイオインスパイアされたニューラルサーキットポリシーモデルが革新的な制御モジュールとして登場した。
我々は、変分オートエンコーダとニューラルネットワークポリシーコントローラを統合することで、飛躍的に前進する。
本研究は,変分オートエンコーダへのアーキテクチャシフトに加えて,自動潜時摂動ツールを導入する。
論文 参考訳(メタデータ) (2024-04-02T09:05:47Z) - Fuzzing BusyBox: Leveraging LLM and Crash Reuse for Embedded Bug
Unearthing [2.4287247817521096]
BusyBoxの脆弱性は、はるかに大きな結果をもたらす可能性がある。
この研究は、現実の組み込み製品で古いBusyBoxバージョンが普及していることを明らかにした。
ソフトウェアテストの強化のための2つのテクニックを紹介します。
論文 参考訳(メタデータ) (2024-03-06T17:57:03Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - Revisiting Neural Program Smoothing for Fuzzing [8.861172379630899]
本稿では,標準グレーボックスファザに対するNPSファザの最も広範囲な評価について述べる。
我々はNuzz++を実装し、NPSファジィの実用的限界に対処することで性能が向上することを示す。
MLベースファジィの簡易かつ再現可能な評価のためのGPUアクセスプラットフォームであるMLFuzzを提案する。
論文 参考訳(メタデータ) (2023-09-28T17:17:11Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。