Communication-aware Hierarchical Map Compression of Time-Varying Environments for Mobile Robots
- URL: http://arxiv.org/abs/2504.10751v1
- Date: Mon, 14 Apr 2025 22:54:29 GMT
- Title: Communication-aware Hierarchical Map Compression of Time-Varying Environments for Mobile Robots
- Authors: Daniel T. Larsson, Dipankar Maity,
- Abstract summary: We develop a framework for the time-sequential compression of dynamic probabilistic occupancy grids.<n>We search for a multi-resolution hierarchical encoder that balances the quality of the compressed map with its description size.
- Score: 2.8544822698499255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop a systematic framework for the time-sequential compression of dynamic probabilistic occupancy grids. Our approach leverages ideas from signal compression theory to formulate an optimization problem that searches for a multi-resolution hierarchical encoder that balances the quality of the compressed map (distortion) with its description size, the latter of which relates to the bandwidth required to reliably transmit the map to other agents or to store map estimates in on-board memory. The resulting optimization problem allows for multi-resolution map compressions to be obtained that satisfy available communication or memory resources, and does not require knowledge of the occupancy map dynamics. We develop an algorithm to solve our problem, and demonstrate the utility of the proposed framework in simulation on both static (i.e., non-time varying) and dynamic (time-varying) occupancy maps.
Related papers
- Emergency Caching: Coded Caching-based Reliable Map Transmission in
Emergency Networks [9.423705897088672]
We propose a three-layer architecture of caching networks focusing on data collection and reliable transmission.
We propose a disaster map collection framework that integrates coded caching technologies.
Our proposed scheme is more effective than the non-coding caching scheme, as validated by simulation.
arXiv Detail & Related papers (2024-02-27T14:44:11Z) - Efficient Neural Representation of Volumetric Data using
Coordinate-Based Networks [0.0]
We propose an efficient approach for the compression and representation of volumetric data using coordinate-based networks and hash encoding.
Our approach enables effective compression by learning a mapping between spatial coordinates and intensity values.
arXiv Detail & Related papers (2024-01-16T21:33:01Z) - Differentiable Resolution Compression and Alignment for Efficient Video
Classification and Retrieval [16.497758750494537]
We propose an efficient video representation network with Differentiable Resolution Compression and Alignment mechanism.
We leverage a Differentiable Context-aware Compression Module to encode the saliency and non-saliency frame features.
We introduce a new Resolution-Align Transformer Layer to capture global temporal correlations among frame features with different resolutions.
arXiv Detail & Related papers (2023-09-15T05:31:53Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Dynamic Spatial Sparsification for Efficient Vision Transformers and
Convolutional Neural Networks [88.77951448313486]
We present a new approach for model acceleration by exploiting spatial sparsity in visual data.
We propose a dynamic token sparsification framework to prune redundant tokens.
We extend our method to hierarchical models including CNNs and hierarchical vision Transformers.
arXiv Detail & Related papers (2022-07-04T17:00:51Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - DMGCRN: Dynamic Multi-Graph Convolution Recurrent Network for Traffic
Forecasting [7.232141271583618]
We propose a novel dynamic multi-graph convolution recurrent network (DMG) to tackle above issues.
We use the distance-based graph to capture spatial information from nodes are close in distance.
We also construct a novel latent graph which encoded the structure correlations among roads to capture spatial information from nodes are similar in structure.
arXiv Detail & Related papers (2021-12-04T06:51:55Z) - Variable-Rate Deep Image Compression through Spatially-Adaptive Feature
Transform [58.60004238261117]
We propose a versatile deep image compression network based on Spatial Feature Transform (SFT arXiv:1804.02815)
Our model covers a wide range of compression rates using a single model, which is controlled by arbitrary pixel-wise quality maps.
The proposed framework allows us to perform task-aware image compressions for various tasks.
arXiv Detail & Related papers (2021-08-21T17:30:06Z) - Revisit Visual Representation in Analytics Taxonomy: A Compression
Perspective [69.99087941471882]
We study the problem of supporting multiple machine vision analytics tasks with the compressed visual representation.
By utilizing the intrinsic transferability among different tasks, our framework successfully constructs compact and expressive representations at low bit-rates.
In order to impose compactness in the representations, we propose a codebook-based hyperprior.
arXiv Detail & Related papers (2021-06-16T01:44:32Z) - Distributed Learning and Democratic Embeddings: Polynomial-Time Source
Coding Schemes Can Achieve Minimax Lower Bounds for Distributed Gradient
Descent under Communication Constraints [46.17631511884969]
We consider the problem of compressing a vector in the n-dimensional Euclidean space, subject to a bit-budget of R-bits per dimension.
We show that Democratic and Near-Democratic source-coding schemes are (near) optimal in the sense that the covering efficiency of the resulting quantizer is either dimension independent, or has a very weak logarithmic dependence.
We propose a distributed optimization algorithm: DGD-DEF, which employs our proposed coding strategy, and achieves the minimax optimal convergence rate to within (near) constant factors.
arXiv Detail & Related papers (2021-03-13T00:04:11Z) - Learning to Localize Through Compressed Binary Maps [83.03367511221437]
We learn to compress the map representation such that it is optimal for the localization task.
Our experiments show that it is possible to learn a task-specific compression which reduces storage requirements by two orders of magnitude over general-purpose codecs.
arXiv Detail & Related papers (2020-12-20T14:47:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.