DMGCRN: Dynamic Multi-Graph Convolution Recurrent Network for Traffic
Forecasting
- URL: http://arxiv.org/abs/2112.02264v1
- Date: Sat, 4 Dec 2021 06:51:55 GMT
- Title: DMGCRN: Dynamic Multi-Graph Convolution Recurrent Network for Traffic
Forecasting
- Authors: Yanjun Qin, Yuchen Fang, Haiyong Luo, Fang Zhao, Chenxing Wang
- Abstract summary: We propose a novel dynamic multi-graph convolution recurrent network (DMG) to tackle above issues.
We use the distance-based graph to capture spatial information from nodes are close in distance.
We also construct a novel latent graph which encoded the structure correlations among roads to capture spatial information from nodes are similar in structure.
- Score: 7.232141271583618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic forecasting is a problem of intelligent transportation systems (ITS)
and crucial for individuals and public agencies. Therefore, researches pay
great attention to deal with the complex spatio-temporal dependencies of
traffic system for accurate forecasting. However, there are two challenges: 1)
Most traffic forecasting studies mainly focus on modeling correlations of
neighboring sensors and ignore correlations of remote sensors, e.g., business
districts with similar spatio-temporal patterns; 2) Prior methods which use
static adjacency matrix in graph convolutional networks (GCNs) are not enough
to reflect the dynamic spatial dependence in traffic system. Moreover,
fine-grained methods which use self-attention to model dynamic correlations of
all sensors ignore hierarchical information in road networks and have quadratic
computational complexity. In this paper, we propose a novel dynamic multi-graph
convolution recurrent network (DMGCRN) to tackle above issues, which can model
the spatial correlations of distance, the spatial correlations of structure,
and the temporal correlations simultaneously. We not only use the
distance-based graph to capture spatial information from nodes are close in
distance but also construct a novel latent graph which encoded the structure
correlations among roads to capture spatial information from nodes are similar
in structure. Furthermore, we divide the neighbors of each sensor into
coarse-grained regions, and dynamically assign different weights to each region
at different times. Meanwhile, we integrate the dynamic multi-graph convolution
network into the gated recurrent unit (GRU) to capture temporal dependence.
Extensive experiments on three real-world traffic datasets demonstrate that our
proposed algorithm outperforms state-of-the-art baselines.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - CDGNet: A Cross-Time Dynamic Graph-based Deep Learning Model for Traffic
Forecasting [7.169972421976212]
We propose a novel cross-time dynamic graph-based deep learning model, named CDGNet, for traffic forecasting.
We design a gating mechanism to sparse the cross-time dynamic graph, which conforms to the sparse spatial correlations in the real world.
arXiv Detail & Related papers (2021-12-06T01:56:07Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
We propose a novel deep learning model for traffic forecasting named inefficient-Context Spatio-Temporal Joint Linear Attention (SSTLA)
SSTLA applies linear attention to a joint graph to capture global dependence between alltemporal- nodes efficiently.
Experiments on two real-world traffic datasets, England and Temporal7, demonstrate that our STJLA can achieve 9.83% and 3.08% 3.08% accuracy in MAE measure over state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-04T06:39:18Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Space Meets Time: Local Spacetime Neural Network For Traffic Flow
Forecasting [11.495992519252585]
We argue that such correlations are universal and play a pivotal role in traffic flow.
We propose a new spacetime interval learning framework that constructs a local-spacetime context of a traffic sensor.
The proposed STNN model can be applied on any unseen traffic networks.
arXiv Detail & Related papers (2021-09-11T09:04:35Z) - SST-GNN: Simplified Spatio-temporal Traffic forecasting model using
Graph Neural Network [2.524966118517392]
We have designed a simplified S-temporal GNN(SST-GNN) that effectively encodes the dependency by separately aggregating different neighborhood.
We have shown that our model has significantly outperformed the state-of-the-art models on three real-world traffic datasets.
arXiv Detail & Related papers (2021-03-31T18:28:44Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.