論文の概要: Time-varying EEG spectral power predicts evoked and spontaneous fMRI motor brain activity
- arxiv url: http://arxiv.org/abs/2504.10752v1
- Date: Mon, 14 Apr 2025 22:54:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:06:12.538306
- Title: Time-varying EEG spectral power predicts evoked and spontaneous fMRI motor brain activity
- Title(参考訳): 時間変化脳波スペクトルパワーによる脳活動の誘発と自発性fMRIの脳活動の予測
- Authors: Neil Mehta, Ines Goncalves, Alberto Montagna, Mathis Fleury, Gustavo Caetano, Ines Esteves, Athanasios Vourvopoulos, Pulkit Grover, Patricia Figueiredo,
- Abstract要約: 脳波-fMRI同時記録は、fMRI信号と脳波信号の相補的な高空間分解能と高時間分解能をそれぞれ利用することにより、脳活動の研究にますます利用されている。
本稿では,Sparse Group Lasso正則化を用いた個別被験者を対象とした解釈モデルを用いて,運動脳ネットワークのタスク誘発信号と自発fMRI信号の両方を予測できるかどうかを検討する。
- 参考スコア(独自算出の注目度): 4.2991900707527915
- License:
- Abstract: Simultaneous EEG-fMRI recordings are increasingly used to investigate brain activity by leveraging the complementary high spatial and high temporal resolution of fMRI and EEG signals respectively. It remains unclear, however, to what degree these two imaging modalities capture shared information about neural activity. Here, we investigate whether it is possible to predict both task-evoked and spontaneous fMRI signals of motor brain networks from EEG time-varying spectral power using interpretable models trained for individual subjects with Sparse Group Lasso regularization. Critically, we test the trained models on data acquired from each subject on a different day and obtain statistical validation by comparison with appropriate null models as well as the conventional EEG sensorimotor rhythm. We find significant prediction results in most subjects, although less frequently for resting-state compared to task-based conditions. Furthermore, we interpret the model learned parameters to understand representations of EEG-fMRI coupling in terms of predictive EEG channels, frequencies, and haemodynamic delays. In conclusion, our work provides evidence of the ability to predict fMRI motor brain activity from EEG recordings alone across different days, in both task-evoked and spontaneous conditions, with statistical significance in individual subjects. These results present great potential for translation to EEG neurofeedback applications.
- Abstract(参考訳): 脳波-fMRI同時記録は、fMRI信号と脳波信号の相補的な高空間分解能と高時間分解能をそれぞれ利用することにより、脳活動の研究にますます利用されている。
しかし、これらの2つの画像モダリティが神経活動についての共有情報をどの程度捉えているかは、まだ不明である。
本稿では,Sparse Group Lasso正則化を用いた個別被験者を対象とした解釈モデルを用いて,脳波の時間変化スペクトルパワーから,運動脳ネットワークのタスク誘発信号と自発fMRI信号の両方を予測できるかどうかを検討する。
批判的には、各被験者から取得したデータに基づいて、トレーニングされたモデルを異なる日にテストし、従来の脳波知覚運動リズムと同様に、適切なヌルモデルと比較して統計的に検証する。
多くの被験者で有意な予測結果が得られたが,タスクベース条件と比較して安静状態の場合が少なくなった。
さらに、学習したパラメータを解釈し、予測的脳波チャンネル、周波数、および血行遅延の観点から脳波-fMRI結合の表現を理解する。
以上の結果から,脳波の脳活動の予測能力は,脳波のみの脳波記録から,タスク誘発状態と自発状態の両方において,各被験者に統計的に有意な影響を及ぼす可能性が示唆された。
これらの結果は脳波神経フィードバックアプリケーションへの翻訳の可能性を示す。
関連論文リスト
- NeuroBOLT: Resting-state EEG-to-fMRI Synthesis with Multi-dimensional Feature Mapping [9.423808859117122]
我々は,脳内のfMRI活動信号に生の脳波データを変換するためにNeuroBOLT,すなわちNeuro-to-BOLD Transformerを導入する。
実験の結果,NeuroBOLTは一次感覚野,高レベル認知領域,深部皮質下脳領域から観測不能なfMRI信号を効果的に再構成することがわかった。
論文 参考訳(メタデータ) (2024-10-07T02:47:55Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEGはRobust Inter-Subject Electrode implantation Variability iEEGの略である。
iEEGデコーダモデルを開発し,各患者に電極の座標を必要とせずに複数の患者のデータに適用した。
分析の結果, RISE-iEEG は HTNet や EEGNet よりも F1 よりも10%高い値を示した。
論文 参考訳(メタデータ) (2024-08-12T18:33:19Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Leveraging sinusoidal representation networks to predict fMRI signals
from EEG [3.3121941932506473]
本稿では,マルチチャネル脳波から直接fMRI信号を予測できる新しいアーキテクチャを提案する。
本モデルは,脳波の周波数情報を学習するための正弦波表現ネットワーク(SIREN)を実装して実現している。
我々は,脳波-fMRI同時データセットを8被験者で評価し,脳皮質下 fMRI 信号の予測の可能性について検討した。
論文 参考訳(メタデータ) (2023-11-06T03:16:18Z) - Optimized EEG based mood detection with signal processing and deep
neural networks for brain-computer interface [0.0]
本研究の目的は,脳波と被験者の気分との関係を識別するスマート意思決定モデルを確立することである。
健康な28人の被験者の脳波は同意を得て観測され、気分を研究・認識する試みがなされている。
これらの技術を用いて、96.01%の検出精度が得られた。
論文 参考訳(メタデータ) (2023-03-30T15:23:24Z) - Power Spectral Density-Based Resting-State EEG Classification of
First-Episode Psychosis [1.3416169841532526]
脳の異常活動パターンの同定における刺激非依存型脳波の有用性を示す。
複数の周波数帯域を組み込んだ一般化モデルでは、脳波バイオマーカーとFEP(First-Episode Psychosis)を関連付けるのがより効率的である。
本稿では,PSD解析における前処理手法の総合的な考察と,異なるモデルの詳細な比較について述べる。
論文 参考訳(メタデータ) (2022-11-23T00:28:41Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
タスク指向型自己教師型学習手法を提案する。
大きなカーネルを持つ特定の2つの分岐畳み込みニューラルネットワークを特徴抽出器として設計する。
効果的に設計され、訓練された特徴抽出器は、より優れた特徴表現を脳波から抽出できることが示されている。
論文 参考訳(メタデータ) (2022-07-04T13:15:08Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
本研究では,前腕のEMG活性をハンドキネマティクスに連続的にマップする,長期記憶(LSTM)ネットワークに基づく新しい手法を提案する。
私たちの研究は、この困難なデータセットを使用するハンドキネマティクスの予測に関する最初の報告です。
提案手法は, 人工手指の複数のDOFの独立的, 比例的アクティベーションのための制御信号の生成に適していることが示唆された。
論文 参考訳(メタデータ) (2021-04-29T00:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。