論文の概要: Efficient and Robust Remote Sensing Image Denoising Using Randomized Approximation of Geodesics' Gramian on the Manifold Underlying the Patch Space
- arxiv url: http://arxiv.org/abs/2504.10820v1
- Date: Tue, 15 Apr 2025 02:46:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:06:50.599692
- Title: Efficient and Robust Remote Sensing Image Denoising Using Randomized Approximation of Geodesics' Gramian on the Manifold Underlying the Patch Space
- Title(参考訳): パッチ空間下の多様体上の測地線のランダム近似を用いた効率的かつロバストなリモートセンシング画像
- Authors: Kelum Gajamannage, Dilhani I. Jayathilake, Maria Vasilyeva,
- Abstract要約: トレーニングサンプルの追加を必要としない頑健なリモートセンシング画像復調手法を提案する。
この手法は、各色チャネルに独自の強調を課し、3つの分極チャネルをマージして最終画像を生成する。
- 参考スコア(独自算出の注目度): 2.56711111236449
- License:
- Abstract: Remote sensing images are widely utilized in many disciplines such as feature recognition and scene semantic segmentation. However, due to environmental factors and the issues of the imaging system, the image quality is often degraded which may impair subsequent visual tasks. Even though denoising remote sensing images plays an essential role before applications, the current denoising algorithms fail to attain optimum performance since these images possess complex features in the texture. Denoising frameworks based on artificial neural networks have shown better performance; however, they require exhaustive training with heterogeneous samples that extensively consume resources like power, memory, computation, and latency. Thus, here we present a computationally efficient and robust remote sensing image denoising method that doesn't require additional training samples. This method partitions patches of a remote-sensing image in which a low-rank manifold, representing the noise-free version of the image, underlies the patch space. An efficient and robust approach to revealing this manifold is a randomized approximation of the singular value spectrum of the geodesics' Gramian matrix of the patch space. The method asserts a unique emphasis on each color channel during denoising so the three denoised channels are merged to produce the final image.
- Abstract(参考訳): リモートセンシング画像は特徴認識やシーンセマンティックセグメンテーションといった多くの分野で広く利用されている。
しかし、環境要因や撮像システムの問題点により、画像の画質が劣化し、その後の視覚的タスクを損なうことがしばしばある。
リモートセンシング画像のデノイングはアプリケーション前に重要な役割を担っているが、現在のデノナイジングアルゴリズムはテクスチャに複雑な特徴があるため、最適性能を達成できない。
人工知能ニューラルネットワークに基づくフレームワークのデモでは、パフォーマンスが向上している。しかしながら、電力、メモリ、計算、レイテンシといったリソースを広範囲に消費する異種サンプルによる徹底的なトレーニングが必要である。
そこで本研究では,新たなトレーニングサンプルを必要としない,計算効率が高く頑健なリモートセンシング画像復調手法を提案する。
この方法では、画像のノイズフリーバージョンを表す低ランク多様体が、パッチ空間の下位にあるリモートセンシング画像のパッチを分割する。
この多様体を明らかにするための効率的で堅牢なアプローチは、パッチ空間の測地線のグラム行列の特異値スペクトルのランダム化近似である。
この手法は、各色チャネルに独自の強調を課し、3つの分極チャネルをマージして最終画像を生成する。
関連論文リスト
- Linear Combinations of Patches are Unreasonably Effective for Single-Image Denoising [5.893124686141782]
ディープニューラルネットワークは、画像のノイズ化に革命を起こし、大幅な精度向上を実現している。
画像先行を外部から学習する必要性を軽減するため、入力ノイズ画像の分析のみに基づいて、単画像方式で復調を行う。
本研究は, この制約下でのデノナイズのためのパッチの線形結合の有効性について検討する。
論文 参考訳(メタデータ) (2022-12-01T10:52:03Z) - Deep Unfolding for Iterative Stripe Noise Removal [4.756256077972335]
赤外線イメージングシステムの不均一光電応答は、赤外線画像に重畳される固定パターンストライプノイズをもたらす。
既存の画像デストリップ手法は、すべてのストリップノイズアーティファクトを同時に除去し、画像の詳細と構造を保存し、リアルタイムのパフォーマンスのバランスをとるのに苦労する。
本稿では, 劣化画像の除去アルゴリズムを提案する。これは, 近傍のカラム信号相関を利用して, 独立したカラムストライプノイズを除去する。
論文 参考訳(メタデータ) (2022-09-27T02:53:03Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
本稿では,Deep Semantic Statistics Matching (D2SM) Denoising Networkを紹介する。
事前訓練された分類ネットワークの意味的特徴を利用して、意味的特徴空間における明瞭な画像の確率的分布と暗黙的に一致させる。
識別画像のセマンティックな分布を学習することで,ネットワークの認知能力を大幅に向上させることを実証的に見出した。
論文 参考訳(メタデータ) (2022-07-19T14:35:42Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
我々は,PNGAN(Pixel-level Noise-aware Generative Adrial Network)という新しいフレームワークを提案する。
PNGANは、トレーニング済みのリアルデノイザーを使用して、フェイク画像とリアルノイズ画像をほぼノイズのないソリューション空間にマッピングする。
より優れたノイズフィッティングを実現するため,ジェネレータとしてSimple Multi-versa-scale Network (SMNet) を提案する。
論文 参考訳(メタデータ) (2022-04-06T14:09:02Z) - A Novel Image Denoising Algorithm Using Concepts of Quantum Many-Body
Theory [40.29747436872773]
本稿では,量子多体理論に触発された新しい画像認識アルゴリズムを提案する。
パッチ解析に基づき、局所像近傍における類似度尺度は、量子力学における相互作用に似た用語によって定式化される。
本稿では,医療用超音波画像復号法などの現実的な課題に対処する手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T23:34:37Z) - Synergy Between Semantic Segmentation and Image Denoising via Alternate
Boosting [102.19116213923614]
ノイズ除去とセグメンテーションを交互に行うためのブーストネットワークを提案する。
我々は,ノイズによるセグメンテーション精度の低下に対処するだけでなく,画素別意味情報によってデノージング能力が向上することを示す。
実験の結果,デノイド画像の品質が大幅に向上し,セグメンテーション精度がクリーン画像に近いことを示した。
論文 参考訳(メタデータ) (2021-02-24T06:48:45Z) - Learning Spatial and Spatio-Temporal Pixel Aggregations for Image and
Video Denoising [104.59305271099967]
ピクセル集計ネットワークを提示し、画像デノイジングのためのピクセルサンプリングと平均戦略を学びます。
時間空間にまたがるサンプル画素をビデオデノナイズするための画素集約ネットワークを開発した。
本手法は,動的シーンにおける大きな動きに起因する誤認問題を解決することができる。
論文 参考訳(メタデータ) (2021-01-26T13:00:46Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
Neighbor2Neighborを提示し、ノイズの多い画像のみで効果的な画像消音モデルをトレーニングします。
ネットワークのトレーニングに使用される入力とターゲットは、同じノイズ画像からサブサンプリングされた画像である。
デノイジングネットワークは、第1段階で生成されたサブサンプルトレーニングペアで訓練され、提案された正規化器は、より良いパフォーマンスのための追加の損失として訓練される。
論文 参考訳(メタデータ) (2021-01-08T02:03:25Z) - Image Denoising Using the Geodesics' Gramian of the Manifold Underlying Patch-Space [1.7767466724342067]
本稿では,正確な画像を生成することができる新しい,計算効率の良い画像復号法を提案する。
画像の滑らか性を維持するため、画素ではなく画像から分割されたパッチを入力する。
本稿では,この手法の性能をベンチマーク画像処理法に対して検証する。
論文 参考訳(メタデータ) (2020-10-14T04:07:24Z) - Reconstructing the Noise Manifold for Image Denoising [56.562855317536396]
本稿では,画像ノイズ空間の構造を明示的に活用するcGANを提案する。
画像ノイズの低次元多様体を直接学習することにより、この多様体にまたがる情報のみをノイズ画像から除去する。
我々の実験に基づいて、我々のモデルは既存の最先端アーキテクチャを大幅に上回っている。
論文 参考訳(メタデータ) (2020-02-11T00:31:31Z) - Spatial-Adaptive Network for Single Image Denoising [14.643663950015334]
本稿では,効率的な単一画像ブラインドノイズ除去のための空間適応型雑音除去ネットワーク(SADNet)を提案する。
本手法は, 定量的かつ視覚的に, 最先端の復調法を超越することができる。
論文 参考訳(メタデータ) (2020-01-28T12:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。