OmniVDiff: Omni Controllable Video Diffusion for Generation and Understanding
- URL: http://arxiv.org/abs/2504.10825v1
- Date: Tue, 15 Apr 2025 03:05:46 GMT
- Title: OmniVDiff: Omni Controllable Video Diffusion for Generation and Understanding
- Authors: Dianbing Xi, Jiepeng Wang, Yuanzhi Liang, Xi Qiu, Yuchi Huo, Rui Wang, Chi Zhang, Xuelong Li,
- Abstract summary: We propose a novel framework for controllable video diffusion, OmniVDiff, aiming to synthesize and comprehend multiple video visual content in a single diffusion model.<n>Our model supports three key functionalities: text-conditioned video generation, video understanding, and X-conditioned video generation.<n>By integrating these diverse tasks into a unified video diffusion framework, OmniVDiff enhances the flexibility and scalability for controllable video diffusion.
- Score: 48.39161756773205
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper, we propose a novel framework for controllable video diffusion, OmniVDiff, aiming to synthesize and comprehend multiple video visual content in a single diffusion model. To achieve this, OmniVDiff treats all video visual modalities in the color space to learn a joint distribution, while employing an adaptive control strategy that dynamically adjusts the role of each visual modality during the diffusion process, either as a generation modality or a conditioning modality. This allows flexible manipulation of each modality's role, enabling support for a wide range of tasks. Consequently, our model supports three key functionalities: (1) Text-conditioned video generation: multi-modal visual video sequences (i.e., rgb, depth, canny, segmentaion) are generated based on the text conditions in one diffusion process; (2) Video understanding: OmniVDiff can estimate the depth, canny map, and semantic segmentation across the input rgb frames while ensuring coherence with the rgb input; and (3) X-conditioned video generation: OmniVDiff generates videos conditioned on fine-grained attributes (e.g., depth maps or segmentation maps). By integrating these diverse tasks into a unified video diffusion framework, OmniVDiff enhances the flexibility and scalability for controllable video diffusion, making it an effective tool for a variety of downstream applications, such as video-to-video translation. Extensive experiments demonstrate the effectiveness of our approach, highlighting its potential for various video-related applications.
Related papers
- BlobGEN-Vid: Compositional Text-to-Video Generation with Blob Video Representations [82.94002870060045]
Existing video generation models struggle to follow complex text prompts and synthesize multiple objects.
We develop a blob-grounded video diffusion model named BlobGEN-Vid that allows users to control object motions and fine-grained object appearance.
We show that our framework is model-agnostic and build BlobGEN-Vid based on both U-Net and DiT-based video diffusion models.
arXiv Detail & Related papers (2025-01-13T19:17:06Z) - Divot: Diffusion Powers Video Tokenizer for Comprehension and Generation [54.21476271127356]
Divot is a Diffusion-Powered Video Tokenizer.<n>We present Divot-unaVic through video-to-text autoregression and text-to-video generation.
arXiv Detail & Related papers (2024-12-05T18:53:04Z) - Optical-Flow Guided Prompt Optimization for Coherent Video Generation [51.430833518070145]
We propose a framework called MotionPrompt that guides the video generation process via optical flow.<n>We optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs.<n>This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content.
arXiv Detail & Related papers (2024-11-23T12:26:52Z) - Realizing Video Summarization from the Path of Language-based Semantic Understanding [19.825666473712197]
We propose a novel video summarization framework inspired by the Mixture of Experts (MoE) paradigm.
Our approach integrates multiple VideoLLMs to generate comprehensive and coherent textual summaries.
arXiv Detail & Related papers (2024-10-06T15:03:22Z) - MM-LDM: Multi-Modal Latent Diffusion Model for Sounding Video Generation [14.28357169715152]
We introduce a novel multi-modal latent diffusion model (MM-LDM) for the task.
We first unify the representation of audio and video data by converting them into a single or a couple of images.
Then, we introduce a hierarchical multi-modal autoencoder that constructs a low-level perceptual latent space for each modality and a shared high-level semantic feature space.
arXiv Detail & Related papers (2024-10-02T14:32:24Z) - VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining.
We construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts.
We finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions.
arXiv Detail & Related papers (2024-07-08T18:12:49Z) - MEVG: Multi-event Video Generation with Text-to-Video Models [18.06640097064693]
We introduce a novel diffusion-based video generation method, generating a video showing multiple events given multiple individual sentences from the user.
Our method does not require a large-scale video dataset since our method uses a pre-trained text-to-video generative model without a fine-tuning process.
Our proposed method is superior to other video-generative models in terms of temporal coherency of content and semantics.
arXiv Detail & Related papers (2023-12-07T06:53:25Z) - Deep Video Prior for Video Consistency and Propagation [58.250209011891904]
We present a novel and general approach for blind video temporal consistency.
Our method is only trained on a pair of original and processed videos directly instead of a large dataset.
We show that temporal consistency can be achieved by training a convolutional neural network on a video with Deep Video Prior.
arXiv Detail & Related papers (2022-01-27T16:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.