MSNeRV: Neural Video Representation with Multi-Scale Feature Fusion
- URL: http://arxiv.org/abs/2506.15276v1
- Date: Wed, 18 Jun 2025 08:57:12 GMT
- Title: MSNeRV: Neural Video Representation with Multi-Scale Feature Fusion
- Authors: Jun Zhu, Xinfeng Zhang, Lv Tang, JunHao Jiang,
- Abstract summary: Implicit Neural representations (INRs) have emerged as a promising approach for video compression.<n>Existing INR-based methods struggle to effectively represent detail-intensive and fast-changing video content.<n>We propose a multi-scale feature fusion framework, MSNeRV, for neural video representation.
- Score: 27.621656985302973
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Implicit Neural representations (INRs) have emerged as a promising approach for video compression, and have achieved comparable performance to the state-of-the-art codecs such as H.266/VVC. However, existing INR-based methods struggle to effectively represent detail-intensive and fast-changing video content. This limitation mainly stems from the underutilization of internal network features and the absence of video-specific considerations in network design. To address these challenges, we propose a multi-scale feature fusion framework, MSNeRV, for neural video representation. In the encoding stage, we enhance temporal consistency by employing temporal windows, and divide the video into multiple Groups of Pictures (GoPs), where a GoP-level grid is used for background representation. Additionally, we design a multi-scale spatial decoder with a scale-adaptive loss function to integrate multi-resolution and multi-frequency information. To further improve feature extraction, we introduce a multi-scale feature block that fully leverages hidden features. We evaluate MSNeRV on HEVC ClassB and UVG datasets for video representation and compression. Experimental results demonstrate that our model exhibits superior representation capability among INR-based approaches and surpasses VTM-23.7 (Random Access) in dynamic scenarios in terms of compression efficiency.
Related papers
- Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.<n> Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.<n> Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - CANeRV: Content Adaptive Neural Representation for Video Compression [89.35616046528624]
We propose Content Adaptive Neural Representation for Video Compression (CANeRV)<n>CANeRV is an innovative INR-based video compression network that adaptively conducts structure optimisation based on the specific content of each video sequence.<n>We show that CANeRV can outperform both H.266/VVC and state-of-the-art INR-based video compression techniques across diverse video datasets.
arXiv Detail & Related papers (2025-02-10T06:21:16Z) - VQ-NeRV: A Vector Quantized Neural Representation for Videos [3.6662666629446043]
Implicit neural representations (INR) excel in encoding videos within neural networks, showcasing promise in computer vision tasks like video compression and denoising.
We introduce an advanced U-shaped architecture, Vector Quantized-NeRV (VQ-NeRV), which integrates a novel component--the VQ-NeRV Block.
This block incorporates a codebook mechanism to discretize the network's shallow residual features and inter-frame residual information effectively.
arXiv Detail & Related papers (2024-03-19T03:19:07Z) - NERV++: An Enhanced Implicit Neural Video Representation [11.25130799452367]
We introduce neural representations for videos NeRV++, an enhanced implicit neural video representation.
NeRV++ is more straightforward yet effective enhancement over the original NeRV decoder architecture.
We evaluate our method on UVG, MCL JVC, and Bunny datasets, achieving competitive results for video compression with INRs.
arXiv Detail & Related papers (2024-02-28T13:00:32Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Implicit neural representations (INRs) have emerged as a promising approach for video storage and processing.
This paper introduces a universal boosting framework for current implicit video representation approaches.
arXiv Detail & Related papers (2024-02-28T08:32:19Z) - DNeRV: Modeling Inherent Dynamics via Difference Neural Representation
for Videos [53.077189668346705]
Difference Representation for Videos (eRV)
We analyze this from the perspective of limitation function fitting and the importance of frame difference.
DNeRV achieves competitive results against the state-of-the-art neural compression approaches.
arXiv Detail & Related papers (2023-04-13T13:53:49Z) - Towards Scalable Neural Representation for Diverse Videos [68.73612099741956]
Implicit neural representations (INR) have gained increasing attention in representing 3D scenes and images.
Existing INR-based methods are limited to encoding a handful of short videos with redundant visual content.
This paper focuses on developing neural representations for encoding long and/or a large number of videos with diverse visual content.
arXiv Detail & Related papers (2023-03-24T16:32:19Z) - Scalable Neural Video Representations with Learnable Positional Features [73.51591757726493]
We show how to train neural representations with learnable positional features (NVP) that effectively amortize a video as latent codes.
We demonstrate the superiority of NVP on the popular UVG benchmark; compared with prior arts, NVP not only trains 2 times faster (less than 5 minutes) but also exceeds their encoding quality as 34.07rightarrow$34.57 (measured with the PSNR metric)
arXiv Detail & Related papers (2022-10-13T08:15:08Z) - Neural Video Coding using Multiscale Motion Compensation and
Spatiotemporal Context Model [45.46660511313426]
We propose an end-to-end deep neural video coding framework (NVC)
It uses variational autoencoders (VAEs) with joint spatial and temporal prior aggregation (PA) to exploit the correlations in intra-frame pixels, inter-frame motions and inter-frame compensation residuals.
NVC is evaluated for the low-delay causal settings and compared with H.265/HEVC, H.264/AVC and the other learnt video compression methods.
arXiv Detail & Related papers (2020-07-09T06:15:17Z) - An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
Feature and Signal [99.49099501559652]
Video Coding for Machine (VCM) aims to bridge the gap between visual feature compression and classical video coding.
We employ a conditional deep generation network to reconstruct video frames with the guidance of learned motion pattern.
By learning to extract sparse motion pattern via a predictive model, the network elegantly leverages the feature representation to generate the appearance of to-be-coded frames.
arXiv Detail & Related papers (2020-01-09T14:18:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.