ICAFS: Inter-Client-Aware Feature Selection for Vertical Federated Learning
- URL: http://arxiv.org/abs/2504.10851v1
- Date: Tue, 15 Apr 2025 04:19:04 GMT
- Title: ICAFS: Inter-Client-Aware Feature Selection for Vertical Federated Learning
- Authors: Ruochen Jin, Boning Tong, Shu Yang, Bojian Hou, Li Shen,
- Abstract summary: Feature selection plays a crucial role in Vertical Federated Learning (VFL)<n>We introduce ICAFS, a novel multi-stage ensemble approach for effective FS in VFL by considering inter-client interactions.<n> Experiments on multiple real-world datasets demonstrate that ICAFS surpasses current state-of-the-art methods in prediction accuracy.
- Score: 10.133952242666346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vertical federated learning (VFL) enables a paradigm for vertically partitioned data across clients to collaboratively train machine learning models. Feature selection (FS) plays a crucial role in Vertical Federated Learning (VFL) due to the unique nature that data are distributed across multiple clients. In VFL, different clients possess distinct subsets of features for overlapping data samples, making the process of identifying and selecting the most relevant features a complex yet essential task. Previous FS efforts have primarily revolved around intra-client feature selection, overlooking vital feature interaction across clients, leading to subpar model outcomes. We introduce ICAFS, a novel multi-stage ensemble approach for effective FS in VFL by considering inter-client interactions. By employing conditional feature synthesis alongside multiple learnable feature selectors, ICAFS facilitates ensemble FS over these selectors using synthetic embeddings. This method bypasses the limitations of private gradient sharing and allows for model training using real data with refined embeddings. Experiments on multiple real-world datasets demonstrate that ICAFS surpasses current state-of-the-art methods in prediction accuracy.
Related papers
- Active-Passive Federated Learning for Vertically Partitioned Multi-view Data [48.985955382701185]
We propose a flexible Active-Passive Federated learning (APFed) framework.
Active client is the initiator of a learning task and responsible to build the complete model, while the passive clients only serve as assistants.
In addition, we instance the APFed framework into two classification methods with employing the reconstruction loss and the contrastive loss on passive clients, respectively.
arXiv Detail & Related papers (2024-09-06T08:28:35Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - Unlocking the Potential of Prompt-Tuning in Bridging Generalized and
Personalized Federated Learning [49.72857433721424]
Vision Transformers (ViT) and Visual Prompt Tuning (VPT) achieve state-of-the-art performance with improved efficiency in various computer vision tasks.
We present a novel algorithm, SGPT, that integrates Generalized FL (GFL) and Personalized FL (PFL) approaches by employing a unique combination of both shared and group-specific prompts.
arXiv Detail & Related papers (2023-10-27T17:22:09Z) - Heterogeneity-Guided Client Sampling: Towards Fast and Efficient Non-IID Federated Learning [14.866327821524854]
HiCS-FL is a novel client selection method in which the server estimates statistical heterogeneity of a client's data using the client's update of the network's output layer.
In non-IID settings HiCS-FL achieves faster convergence than state-of-the-art FL client selection schemes.
arXiv Detail & Related papers (2023-09-30T00:29:30Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - FedSDG-FS: Efficient and Secure Feature Selection for Vertical Federated
Learning [21.79965380400454]
Vertical Learning (VFL) enables multiple data owners, each holding a different subset of features about largely overlapping sets of data sample(s) to jointly train a useful global model.
Feature selection (FS) is important to VFL. It is still an open research problem as existing FS works designed for VFL either assumes prior knowledge on the number of noisy features or prior knowledge on the post-training threshold of useful features.
We propose the Federated Dual-Gate based Feature Selection (FedSDG-FS) approach. It consists of a Gaussian dual-gate to efficiently approximate the probability of a feature being selected, with privacy
arXiv Detail & Related papers (2023-02-21T03:09:45Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM [62.62684911017472]
Federated learning (FL) enables devices to jointly train shared models while keeping the training data local for privacy purposes.
We introduce a VFL framework with multiple heads (VIM), which takes the separate contribution of each client into account.
VIM achieves significantly higher performance and faster convergence compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-20T23:14:33Z) - Continual Horizontal Federated Learning for Heterogeneous Data [1.493231854066654]
Federated learning is a promising machine learning technique that enables multiple clients to collaboratively build a model without revealing the raw data to each other.
In this paper, we propose a HFL method using neural networks named continual horizontal federated learning (CHFL) to improve the performance of HFL by taking advantage of unique features of each client.
CHFL greatly outperforms vanilla HFL that only uses common features and local learning that uses all features that each client has.
arXiv Detail & Related papers (2022-03-04T02:52:25Z) - Distributed Unsupervised Visual Representation Learning with Fused
Features [13.935997509072669]
Federated learning (FL) enables distributed clients to learn a shared model for prediction while keeping the training data local on each client.
We propose a federated contrastive learning framework consisting of two approaches: feature fusion and neighborhood matching.
It outperforms other methods by 11% on IID data and matches the performance of centralized learning.
arXiv Detail & Related papers (2021-11-21T08:36:31Z) - A User-Guided Bayesian Framework for Ensemble Feature Selection in Life
Science Applications (UBayFS) [0.0]
We propose UBayFS, an ensemble feature selection technique, embedded in a Bayesian statistical framework.
Our approach enhances the feature selection process by considering two sources of information: data and domain knowledge.
A comparison with standard feature selectors underlines that UBayFS achieves competitive performance, while providing additional flexibility to incorporate domain knowledge.
arXiv Detail & Related papers (2021-04-30T06:51:33Z) - Federated Mutual Learning [65.46254760557073]
Federated Mutual Leaning (FML) allows clients training a generalized model collaboratively and a personalized model independently.
The experiments show that FML can achieve better performance than alternatives in typical Federated learning setting.
arXiv Detail & Related papers (2020-06-27T09:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.