Cross-Frequency Implicit Neural Representation with Self-Evolving Parameters
- URL: http://arxiv.org/abs/2504.10929v1
- Date: Tue, 15 Apr 2025 07:14:35 GMT
- Title: Cross-Frequency Implicit Neural Representation with Self-Evolving Parameters
- Authors: Chang Yu, Yisi Luo, Kai Ye, Xile Zhao, Deyu Meng,
- Abstract summary: Implicit neural representation (INR) has emerged as a powerful paradigm for visual data representation.<n>We propose a self-evolving cross-frequency INR using the Haar wavelet transform (termed CF-INR), which decouples data into four frequency components and employs INRs in the wavelet space.<n>We evaluate CF-INR on a variety of visual data representation and recovery tasks, including image regression, inpainting, denoising, and cloud removal.
- Score: 52.574661274784916
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Implicit neural representation (INR) has emerged as a powerful paradigm for visual data representation. However, classical INR methods represent data in the original space mixed with different frequency components, and several feature encoding parameters (e.g., the frequency parameter $\omega$ or the rank $R$) need manual configurations. In this work, we propose a self-evolving cross-frequency INR using the Haar wavelet transform (termed CF-INR), which decouples data into four frequency components and employs INRs in the wavelet space. CF-INR allows the characterization of different frequency components separately, thus enabling higher accuracy for data representation. To more precisely characterize cross-frequency components, we propose a cross-frequency tensor decomposition paradigm for CF-INR with self-evolving parameters, which automatically updates the rank parameter $R$ and the frequency parameter $\omega$ for each frequency component through self-evolving optimization. This self-evolution paradigm eliminates the laborious manual tuning of these parameters, and learns a customized cross-frequency feature encoding configuration for each dataset. We evaluate CF-INR on a variety of visual data representation and recovery tasks, including image regression, inpainting, denoising, and cloud removal. Extensive experiments demonstrate that CF-INR outperforms state-of-the-art methods in each case.
Related papers
- Meta-INR: Efficient Encoding of Volumetric Data via Meta-Learning Implicit Neural Representation [4.782024723712711]
Implicit neural representation (INR) has emerged as a promising solution for encoding volumetric data.<n>We propose Meta-INR, a pretraining strategy adapted from meta-learning algorithms to learn initial INR parameters from partial observation of a dataset.<n>We demonstrate that Meta-INR can effectively extract high-quality generalizable features that help encode unseen similar volume data across diverse datasets.
arXiv Detail & Related papers (2025-02-12T21:54:22Z) - SNeRV: Spectra-preserving Neural Representation for Video [8.978061470104532]
We propose spectra-preserving NeRV (SNeRV) as a novel approach to enhance implicit video representations.<n>In this paper, we use 2D discrete wavelet transform (DWT) to decompose video into low-frequency (LF) and high-frequency (HF) features.<n>We demonstrate that SNeRV outperforms existing NeRV models in capturing fine details and achieves enhanced reconstruction.
arXiv Detail & Related papers (2025-01-03T07:57:38Z) - S-Diff: An Anisotropic Diffusion Model for Collaborative Filtering in Spectral Domain [23.22881271027173]
We propose S-Diff, inspired by graph-based collaborative filtering.<n>S-Diff maps user interaction vectors into the spectral domain and parameterizes diffusion noise to align with graph frequency.<n>This anisotropic diffusion retains significant low-frequency components, preserving a high signal-to-noise ratio.
arXiv Detail & Related papers (2024-12-31T10:54:41Z) - FreqMixFormerV2: Lightweight Frequency-aware Mixed Transformer for Human Skeleton Action Recognition [9.963966059349731]
FreqMixForemrV2 is built upon the Frequency-aware Mixed Transformer (FreqMixFormer) for identifying subtle and discriminative actions.<n>The proposed model achieves a superior balance between efficiency and accuracy, outperforming state-of-the-art methods with only 60% of the parameters.
arXiv Detail & Related papers (2024-12-29T23:52:40Z) - FINER: Flexible spectral-bias tuning in Implicit NEural Representation
by Variable-periodic Activation Functions [40.80112550091512]
Implicit Neural Representation is causing a revolution in the field of signal processing.
Current INR techniques suffer from a restricted capability to tune their supported frequency set.
We propose variable-periodic activation functions, for which we propose FINER.
We demonstrate the capabilities of FINER in the contexts of 2D image fitting, 3D signed distance field representation, and 5D neural fields radiance optimization.
arXiv Detail & Related papers (2023-12-05T02:23:41Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
Generalizable implicit neural representation (INR) enables a single continuous function to represent multiple data instances.
We propose a novel framework for generalizable INR that combines a transformer encoder with a locality-aware INR decoder.
Our framework significantly outperforms previous generalizable INRs and validates the usefulness of the locality-aware latents for downstream tasks.
arXiv Detail & Related papers (2023-10-09T11:26:58Z) - Progressive Fourier Neural Representation for Sequential Video
Compilation [75.43041679717376]
Motivated by continual learning, this work investigates how to accumulate and transfer neural implicit representations for multiple complex video data over sequential encoding sessions.
We propose a novel method, Progressive Fourier Neural Representation (PFNR), that aims to find an adaptive and compact sub-module in Fourier space to encode videos in each training session.
We validate our PFNR method on the UVG8/17 and DAVIS50 video sequence benchmarks and achieve impressive performance gains over strong continual learning baselines.
arXiv Detail & Related papers (2023-06-20T06:02:19Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
We propose a conditioning trick, called difference departure from normality, applied on the generator network in response to instability issues during GAN training.
We force the generator to get closer to the departure from normality function of real samples computed in the spectral domain of Schur decomposition.
arXiv Detail & Related papers (2020-10-12T16:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.