論文の概要: Defending Against Frequency-Based Attacks with Diffusion Models
- arxiv url: http://arxiv.org/abs/2504.11034v1
- Date: Tue, 15 Apr 2025 09:57:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:09:50.574283
- Title: Defending Against Frequency-Based Attacks with Diffusion Models
- Title(参考訳): 拡散モデルによる周波数ベース攻撃に対する防御
- Authors: Fatemeh Amerehi, Patrick Healy,
- Abstract要約: 拡散モデルは、画素単位の逆方向の摂動に対処するだけでなく、非逆方向のデータシフトに対処する上でも非常に有効であることが証明されている。
本研究は,低周波領域から高周波領域への多彩な歪みパターンの取り扱いの有効性を明らかにする。
- 参考スコア(独自算出の注目度): 0.23020018305241333
- License:
- Abstract: Adversarial training is a common strategy for enhancing model robustness against adversarial attacks. However, it is typically tailored to the specific attack types it is trained on, limiting its ability to generalize to unseen threat models. Adversarial purification offers an alternative by leveraging a generative model to remove perturbations before classification. Since the purifier is trained independently of both the classifier and the threat models, it is better equipped to handle previously unseen attack scenarios. Diffusion models have proven highly effective for noise purification, not only in countering pixel-wise adversarial perturbations but also in addressing non-adversarial data shifts. In this study, we broaden the focus beyond pixel-wise robustness to explore the extent to which purification can mitigate both spectral and spatial adversarial attacks. Our findings highlight its effectiveness in handling diverse distortion patterns across low- to high-frequency regions.
- Abstract(参考訳): 敵陣訓練は、敵陣攻撃に対するモデル堅牢性を高めるための一般的な戦略である。
しかしながら、通常はトレーニング対象の特定の攻撃タイプに合わせて調整されており、予期せぬ脅威モデルに一般化する能力を制限する。
敵対的浄化は、生成モデルを利用して分類前の摂動を除去する代替手段を提供する。
パーファイラは分類器と脅威モデルの両方から独立して訓練されるため、これまで見つからなかった攻撃シナリオを扱うのがより適している。
拡散モデルは、画素単位の逆方向の摂動に対処するだけでなく、非逆方向のデータシフトに対処する上でも非常に有効であることが証明されている。
本研究では,画素単位のロバスト性を超えて焦点を広げ,浄化がスペクトル攻撃と空間攻撃の両方を緩和できる範囲を探索する。
本研究は,低周波領域から高周波領域への多彩な歪みパターンの取り扱いの有効性を明らかにする。
関連論文リスト
- Detecting Adversarial Data using Perturbation Forgery [28.237738842260615]
逆検出は、自然データと逆データの間の分布とノイズパターンの相違に基づいて、データフローから逆データを特定し、フィルタリングすることを目的としている。
不均衡および異方性雑音パターンを回避した生成モデルに基づく新しい攻撃
本研究では,ノイズ分布,スパースマスク生成,擬似逆数データ生成を含む摂動フォージェリを提案し,不明瞭な勾配ベース,生成型および物理的逆数攻撃を検出可能な逆数検出器を訓練する。
論文 参考訳(メタデータ) (2024-05-25T13:34:16Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Robust Classification via a Single Diffusion Model [37.46217654590878]
ロバスト拡散(英: Robust Diffusion、RDC)は、事前学習された拡散モデルから構築され、逆向きに堅牢な生成型分類器である。
RDCは75.67%で様々な$ell_infty$標準有界適応攻撃に対して、CIFAR-10で$epsilon_infty/255$で堅牢な精度を達成した。
論文 参考訳(メタデータ) (2023-05-24T15:25:19Z) - Denoising Diffusion Probabilistic Models as a Defense against
Adversarial Attacks [0.0]
本研究は,敵攻撃に対する浄化手法として,拡散確率モデル(DDPM)の性能を評価する。
リンパ節郭清におけるPatchCamelyonデータセットのアプローチについて検討し,その精度を88%まで向上させた。
論文 参考訳(メタデータ) (2023-01-17T13:27:53Z) - Ada3Diff: Defending against 3D Adversarial Point Clouds via Adaptive
Diffusion [70.60038549155485]
ディープ3Dポイントクラウドモデルは敵攻撃に敏感であり、自律運転のような安全クリティカルなアプリケーションに脅威をもたらす。
本稿では,適応強度推定器と拡散モデルを用いて,プリスタンデータ分布を再構築できる新しい歪み認識型防衛フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-29T14:32:43Z) - Threat Model-Agnostic Adversarial Defense using Diffusion Models [14.603209216642034]
ディープニューラルネットワーク(DNN)は、敵攻撃として知られる、知覚できない悪意のある摂動に対して非常に敏感である。
ディープニューラルネットワーク(DNN)は、敵攻撃として知られる、知覚できない悪意のある摂動に対して非常に敏感である。
論文 参考訳(メタデータ) (2022-07-17T06:50:48Z) - Diffusion Models for Adversarial Purification [69.1882221038846]
対人浄化(Adrial purification)とは、生成モデルを用いて敵の摂動を除去する防衛方法の分類である。
そこで我々は,拡散モデルを用いたDiffPureを提案する。
提案手法は,現在の対人訓練および対人浄化方法よりも優れ,最先端の成果を達成する。
論文 参考訳(メタデータ) (2022-05-16T06:03:00Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Localized Uncertainty Attacks [9.36341602283533]
深層学習モデルに対する局所的不確実性攻撃を示す。
我々は、分類器が不確実な入力の領域のみを摂動することで、逆例を作成する。
$ell_p$ ballやパーターブ入力を無差別に検出する機能攻撃とは異なり、ターゲットとする変更は認識できない。
論文 参考訳(メタデータ) (2021-06-17T03:07:22Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - "What's in the box?!": Deflecting Adversarial Attacks by Randomly
Deploying Adversarially-Disjoint Models [71.91835408379602]
敵の例は長い間、機械学習モデルに対する真の脅威と考えられてきた。
我々は、従来のホワイトボックスやブラックボックスの脅威モデルを超えた、配置ベースの防衛パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-09T20:07:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。