QualiTagger: Automating software quality detection in issue trackers
- URL: http://arxiv.org/abs/2504.11053v1
- Date: Tue, 15 Apr 2025 10:40:40 GMT
- Title: QualiTagger: Automating software quality detection in issue trackers
- Authors: Karthik Shivashankar, Rafael Capilla, Maren Maritsdatter Kruke, Mili Orucevic, Antonio Martini,
- Abstract summary: This research uses cutting edge models like Transformers to identify what text is usually associated with different quality properties.<n>We also study the distribution of such qualities in issue trackers from openly accessible software repositories.
- Score: 4.917423556150366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A systems quality is a major concern for development teams when it evolve. Understanding the effects of a loss of quality in the codebase is crucial to avoid side effects like the appearance of technical debt. Although the identification of these qualities in software requirements described in natural language has been investigated, most of the results are often not applicable in practice, and rely on having been validated on small datasets and limited amount of projects. For many years, machine learning (ML) techniques have been proved as a valid technique to identify and tag terms described in natural language. In order to advance previous works, in this research we use cutting edge models like Transformers, together with a vast dataset mined and curated from GitHub, to identify what text is usually associated with different quality properties. We also study the distribution of such qualities in issue trackers from openly accessible software repositories, and we evaluate our approach both with students from a software engineering course and with its application to recognize security labels in industry.
Related papers
- A Purpose-oriented Study on Open-source Software Commits and Their Impacts on Software Quality [0.0]
We categorize commits, train prediction models to automate the classification, and investigate how commit quality is impacted by commits of different purposes.<n>By identifying these impacts, we will establish a new set of guidelines for committing changes that will improve the quality.
arXiv Detail & Related papers (2025-03-04T03:14:57Z) - Leveraging Large Language Models for Efficient Failure Analysis in Game Development [47.618236610219554]
This paper proposes a new approach to automatically identify which change in the code caused a test to fail.
The method leverages Large Language Models (LLMs) to associate error messages with the corresponding code changes causing the failure.
Our approach reaches an accuracy of 71% in our newly created dataset, which comprises issues reported by developers at EA over a period of one year.
arXiv Detail & Related papers (2024-06-11T09:21:50Z) - A Comparative Study of Transformer-based Neural Text Representation
Techniques on Bug Triaging [8.831760500324318]
We offer one of the first investigations that fine-tunes transformer-based language models for the task of bug triaging.
DeBERTa is the most effective technique across the triaging tasks of developer and component assignment.
arXiv Detail & Related papers (2023-10-10T18:09:32Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
This research focuses on finding an efficient machine learning algorithm to identify software weaknesses from requirement specifications.
Keywords extracted using latent semantic analysis help map the CWE categories to PROMISE_exp. Naive Bayes, support vector machine (SVM), decision trees, neural network, and convolutional neural network (CNN) algorithms were tested.
arXiv Detail & Related papers (2023-08-10T13:19:10Z) - Modelling Concurrency Bugs Using Machine Learning [0.0]
This project aims to compare both common and recent machine learning approaches.
We define a synthetic dataset that we generate with the scope of simulating real-life (concurrent) programs.
We formulate hypotheses about fundamental limits of various machine learning model types.
arXiv Detail & Related papers (2023-05-08T17:30:24Z) - Lessons from Formally Verified Deployed Software Systems (Extended version) [65.69802414600832]
This article examines a range of projects, in various application areas, that have produced formally verified systems and deployed them for actual use.
It considers the technologies used, the form of verification applied, the results obtained, and the lessons that the software industry should draw regarding its ability to benefit from formal verification techniques and tools.
arXiv Detail & Related papers (2023-01-05T18:18:46Z) - On the validity of pre-trained transformers for natural language
processing in the software engineering domain [78.32146765053318]
We compare BERT transformer models trained with software engineering data with transformers based on general domain data.
Our results show that for tasks that require understanding of the software engineering context, pre-training with software engineering data is valuable.
arXiv Detail & Related papers (2021-09-10T08:46:31Z) - Detecting Requirements Smells With Deep Learning: Experiences,
Challenges and Future Work [9.44316959798363]
This work aims to improve the previous work by creating a manually labeled dataset and using ensemble learning, Deep Learning (DL), and techniques such as word embeddings and transfer learning to overcome the generalization problem.
The current findings show that the dataset is unbalanced and which class examples should be added more.
arXiv Detail & Related papers (2021-08-06T12:45:15Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z) - Automatic Feasibility Study via Data Quality Analysis for ML: A
Case-Study on Label Noise [21.491392581672198]
We present Snoopy, with the goal of supporting data scientists and machine learning engineers performing a systematic and theoretically founded feasibility study.
We approach this problem by estimating the irreducible error of the underlying task, also known as the Bayes error rate (BER)
We demonstrate in end-to-end experiments how users are able to save substantial labeling time and monetary efforts.
arXiv Detail & Related papers (2020-10-16T14:21:19Z) - Adversarial Knowledge Transfer from Unlabeled Data [62.97253639100014]
We present a novel Adversarial Knowledge Transfer framework for transferring knowledge from internet-scale unlabeled data to improve the performance of a classifier.
An important novel aspect of our method is that the unlabeled source data can be of different classes from those of the labeled target data, and there is no need to define a separate pretext task.
arXiv Detail & Related papers (2020-08-13T08:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.