論文の概要: Zero-Shot Whole-Body Humanoid Control via Behavioral Foundation Models
- arxiv url: http://arxiv.org/abs/2504.11054v1
- Date: Tue, 15 Apr 2025 10:41:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:07:16.375309
- Title: Zero-Shot Whole-Body Humanoid Control via Behavioral Foundation Models
- Title(参考訳): 行動基礎モデルによるゼロショット全体ヒューマノイド制御
- Authors: Andrea Tirinzoni, Ahmed Touati, Jesse Farebrother, Mateusz Guzek, Anssi Kanervisto, Yingchen Xu, Alessandro Lazaric, Matteo Pirotta,
- Abstract要約: 教師なし強化学習(RL)は、複雑な環境下で幅広い下流タスクを解くことができる事前学習エージェントを目標としている。
本稿では,ラベルのない行動データセットからトラジェクトリを模倣するための,教師なしRLの正規化アルゴリズムを提案する。
我々は,この手法の有効性を,挑戦的なヒューマノイド制御問題において実証する。
- 参考スコア(独自算出の注目度): 71.34520793462069
- License:
- Abstract: Unsupervised reinforcement learning (RL) aims at pre-training agents that can solve a wide range of downstream tasks in complex environments. Despite recent advancements, existing approaches suffer from several limitations: they may require running an RL process on each downstream task to achieve a satisfactory performance, they may need access to datasets with good coverage or well-curated task-specific samples, or they may pre-train policies with unsupervised losses that are poorly correlated with the downstream tasks of interest. In this paper, we introduce a novel algorithm regularizing unsupervised RL towards imitating trajectories from unlabeled behavior datasets. The key technical novelty of our method, called Forward-Backward Representations with Conditional-Policy Regularization, is to train forward-backward representations to embed the unlabeled trajectories to the same latent space used to represent states, rewards, and policies, and use a latent-conditional discriminator to encourage policies to ``cover'' the states in the unlabeled behavior dataset. As a result, we can learn policies that are well aligned with the behaviors in the dataset, while retaining zero-shot generalization capabilities for reward-based and imitation tasks. We demonstrate the effectiveness of this new approach in a challenging humanoid control problem: leveraging observation-only motion capture datasets, we train Meta Motivo, the first humanoid behavioral foundation model that can be prompted to solve a variety of whole-body tasks, including motion tracking, goal reaching, and reward optimization. The resulting model is capable of expressing human-like behaviors and it achieves competitive performance with task-specific methods while outperforming state-of-the-art unsupervised RL and model-based baselines.
- Abstract(参考訳): 教師なし強化学習(RL)は、複雑な環境下で幅広い下流タスクを解くことができる事前学習エージェントを目標としている。
最近の進歩にもかかわらず、既存のアプローチはいくつかの制限に悩まされている: 満足なパフォーマンスを達成するために、各下流タスクでRLプロセスを実行すること、良好なカバレッジまたはよく計算されたタスク固有のサンプルを持つデータセットにアクセスすること、あるいは、下流タスクとあまり相関しない教師なしの損失を持つ事前訓練ポリシーを必要とする。
本稿では,ラベルのない行動データセットからトラジェクトリを模倣するために,教師なしRLを正規化するアルゴリズムを提案する。
条件付き正規化を用いたフォワード・バックワード表現(Forward-Backward Representations with Conditional-Policy Regularization)と呼ばれるこの手法の重要な技術的特徴は、ラベルなしの軌跡を状態、報酬、ポリシーを表現するのに使用される同じ潜在空間に埋め込むために前方の表現を訓練することであり、ラベルなしの行動データセットの状態を「発見」するためのポリシーを促進するために潜在条件判別器を使用することである。
その結果、報酬ベースおよび模倣タスクのゼロショット一般化能力を保ちながら、データセットの動作によく適合したポリシーを学ぶことができる。
観察のみのモーションキャプチャデータセットを活用すること、Meta Motivoをトレーニングすること、運動追跡、ゴール到達、報酬最適化を含む、さまざまな身体的タスクを解決するために促される最初のヒューマノイド行動基盤モデルである。
得られたモデルは人間の行動を表現することができ、タスク固有の手法と競合する性能を達成し、最先端の教師なしRLやモデルベースラインより優れています。
関連論文リスト
- COMBO-Grasp: Learning Constraint-Based Manipulation for Bimanual Occluded Grasping [56.907940167333656]
集積ロボットグルーピングは、表面衝突などの環境制約により、所望のグルーピングポーズが運動的に不可能な場所である。
従来のロボット操作アプローチは、人間が一般的に使用する非包括的または双対的戦略の複雑さに苦しむ。
本稿では,2つの協調ポリシーを活用する学習ベースアプローチであるCOMBO-Grasp(Constraint-based Manipulation for Bimanual Occluded Grasping)を紹介する。
論文 参考訳(メタデータ) (2025-02-12T01:31:01Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Foundation Policies with Hilbert Representations [54.44869979017766]
ラベルなしオフラインデータから一般ポリシーを事前学習するための教師なしフレームワークを提案する。
我々の重要な洞察は、基盤となる環境の時間的構造を保存する構造的表現を学習することである。
実験の結果、教師なしのポリシーは、ゴール条件付きおよび一般のRLタスクをゼロショットで解決できることがわかった。
論文 参考訳(メタデータ) (2024-02-23T19:09:10Z) - Generalizable Task Representation Learning for Offline
Meta-Reinforcement Learning with Data Limitations [22.23114883485924]
本稿では,データ制限に直面した一般化可能なタスク表現を学習するための新しいアルゴリズムGENTLEを提案する。
GENTLEは、タスクの特徴を抽出するために、エンコーダ・デコーダアーキテクチャであるTask Auto-Encoder(TAE)を使用している。
限られた行動多様性の影響を軽減するため,TAEのトレーニングに使用されるデータ分布とテスト中に発生するデータ分布とを整合させる擬似遷移を構築した。
論文 参考訳(メタデータ) (2023-12-26T07:02:12Z) - Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory
Weighting [29.21380944341589]
我々は、最先端のオフラインRLアルゴリズムが低リターントラジェクトリによって過剰に抑制され、トラジェクトリを最大限活用できないことを示す。
この再加重サンプリング戦略は、任意のオフラインRLアルゴリズムと組み合わせることができる。
私たちは、CQL、IQL、TD3+BCがこの潜在的なポリシー改善の一部しか達成していないのに対して、これらの同じアルゴリズムがデータセットを完全に活用していることを実証的に示しています。
論文 参考訳(メタデータ) (2023-06-22T17:58:02Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
オフライン強化学習は、追加の環境相互作用なしに、事前に記録された、固定されたデータセット上でポリシーをトレーニングすることを目的としている。
我々は、最近、潜在行動空間における学習ポリシーを基礎として、生成モデルの構築に正規化フローの特別な形式を用いる。
提案手法が最近提案したアルゴリズムより優れていることを示すため,様々な移動タスクとナビゲーションタスクについて評価を行った。
論文 参考訳(メタデータ) (2022-11-20T21:57:10Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Transfer RL across Observation Feature Spaces via Model-Based
Regularization [9.660642248872973]
多くの強化学習(RL)アプリケーションでは、観察空間は人間の開発者によって指定され、物理的実現によって制限される。
そこで本研究では,提案手法を用いて,ソースタスク中の潜時空間のダイナミクスを抽出し,対象タスクに動的モデルを転送するアルゴリズムを提案する。
本アルゴリズムは,タスク間マッピングや目標タスクの事前知識を使わずに,観測空間の劇的な変化に有効である。
論文 参考訳(メタデータ) (2022-01-01T22:41:19Z) - PerSim: Data-Efficient Offline Reinforcement Learning with Heterogeneous
Agents via Personalized Simulators [19.026312915461553]
我々はpersimと呼ばれるモデルベースオフライン強化学習(rl)手法を提案する。
まず,各エージェントのパーソナライズされたシミュレータを,政策を学ぶ前に,各エージェントの履歴軌跡をまとめて学習する。
この表現は、エージェントごとの遷移ダイナミクスを効果的に学習するための、単純で正規化されたニューラルネットワークアーキテクチャを示唆している。
論文 参考訳(メタデータ) (2021-02-13T17:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。