論文の概要: TerraMesh: A Planetary Mosaic of Multimodal Earth Observation Data
- arxiv url: http://arxiv.org/abs/2504.11172v1
- Date: Tue, 15 Apr 2025 13:20:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:09:42.850259
- Title: TerraMesh: A Planetary Mosaic of Multimodal Earth Observation Data
- Title(参考訳): TerraMesh:マルチモーダル地球観測データの惑星モザイク
- Authors: Benedikt Blumenstiel, Paolo Fraccaro, Valerio Marsocci, Johannes Jakubik, Stefano Maurogiovanni, Mikolaj Czerkawski, Rocco Sedona, Gabriele Cavallaro, Thomas Brunschwiler, Juan Bernabe-Moreno, Nicolas Longépé,
- Abstract要約: TerraMeshは、光学、レーダー、標高、土地被覆のモダリティを単一のフォーマットで組み合わせた、グローバルに多様なマルチモーダルデータセットである。
本研究では,TerraMeshで事前学習した際のモデル性能の向上を示す詳細なデータ処理手順,包括的統計,実証的証拠を提供する。
データセットはパーミッシブライセンスで公開されている。
- 参考スコア(独自算出の注目度): 3.674991996196602
- License:
- Abstract: Large-scale foundation models in Earth Observation can learn versatile, label-efficient representations by leveraging massive amounts of unlabeled data. However, existing public datasets are often limited in scale, geographic coverage, or sensor variety. We introduce TerraMesh, a new globally diverse, multimodal dataset combining optical, synthetic aperture radar, elevation, and land-cover modalities in an Analysis-Ready Data format. TerraMesh includes over 9 million samples with eight spatiotemporal aligned modalities, enabling large-scale pre-training and fostering robust cross-modal correlation learning. We provide detailed data processing steps, comprehensive statistics, and empirical evidence demonstrating improved model performance when pre-trained on TerraMesh. The dataset will be made publicly available with a permissive license.
- Abstract(参考訳): 地球観測における大規模な基礎モデルは、大量のラベルのないデータを活用することで、多目的でラベル効率のよい表現を学習することができる。
しかしながら、既存のパブリックデータセットは、スケール、地理的カバレッジ、センサーの多様性に制限されることが多い。
本稿では,光,合成開口レーダ,標高,陸地被覆モダリティを組み合わせた,グローバルに多様なマルチモーダルデータセットであるTerraMeshを解析-可読データ形式で紹介する。
TerraMeshには8つの時空間整合性を備えた900万以上のサンプルが含まれており、大規模な事前トレーニングと堅牢な相互モーダル相関学習の促進を可能にしている。
本研究では,TerraMeshで事前学習した際のモデル性能の向上を示す詳細なデータ処理手順,包括的統計,実証的証拠を提供する。
データセットはパーミッシブライセンスで公開されている。
関連論文リスト
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
本稿では,地球モニタリングタスクにおける深層学習アプリケーションを強化することを目的とした,リモートセンシングデータの自己監督を目的としたデータセットを提案する。
このデータセットは15テラピクセルのグローバルリモートセンシングデータにまたがっており、NEON、Sentinel、Satellogicによる1mの空間解像度データの新たなリリースなど、さまざまなソースの画像を組み合わせている。
このデータセットは、リモートセンシングデータの異なる課題に取り組むために開発されたMasked Autoencoderである。
論文 参考訳(メタデータ) (2025-01-14T13:42:22Z) - SpectralEarth: Training Hyperspectral Foundation Models at Scale [47.93167977587301]
ハイパースペクトル基礎モデルの事前学習を目的とした大規模マルチ時間データセットであるSpectralEarthを紹介する。
我々は、最先端の自己教師付き学習(SSL)アルゴリズムを用いて、SpectralEarthの一連の基礎モデルを事前訓練する。
我々は、土地被覆と収穫型マッピングのための4つの下流データセットを構築し、モデル評価のためのベンチマークを提供する。
論文 参考訳(メタデータ) (2024-08-15T22:55:59Z) - M3LEO: A Multi-Modal, Multi-Label Earth Observation Dataset Integrating Interferometric SAR and Multispectral Data [1.4053129774629076]
M3LEOはマルチモーダルでマルチラベルの地球観測データセットである。
6つの地理的領域から約17M 4x4 kmのデータチップにまたがる。
論文 参考訳(メタデータ) (2024-06-06T16:30:41Z) - Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
我々の新しいアプローチは、脳科学における神経可塑性の概念を活用する、ダイナミックワンフォーオール(DOFA)モデルを導入している。
このダイナミックなハイパーネットワークは、異なる波長に調整され、5つのセンサーのデータに基づいて1つの多目的トランスフォーマーを共同で訓練し、12の異なる地球観測タスクを遂行することを可能にする。
論文 参考訳(メタデータ) (2024-03-22T17:11:47Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-22T10:36:50Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - SkySense: A Multi-Modal Remote Sensing Foundation Model Towards Universal Interpretation for Earth Observation Imagery [35.550999964460466]
本稿では,2150万の時間的シーケンスを持つマルチモーダルリモートセンシングデータセットを事前トレーニングした総称10億スケールモデルSkySenseを提案する。
我々の知る限り、SkySenseは今までで最大のマルチモーダルであり、モジュールを柔軟に組み合わせたり、個別に使用して様々なタスクに適合させることができる。
論文 参考訳(メタデータ) (2023-12-15T09:57:21Z) - Ben-ge: Extending BigEarthNet with Geographical and Environmental Data [1.1377027568901037]
本稿では,世界規模で利用可能な地理・環境データを自由にコンパイルすることで,BigEarthNet-MMデータセットを補完するben-geデータセットを提案する。
このデータセットに基づいて、パッチベースの土地利用/土地被覆分類と土地利用/土地被覆区分の下流タスクに異なるデータモダリティを組み合わせる価値を示す。
論文 参考訳(メタデータ) (2023-07-04T14:17:54Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。