Time-Resolved Stokes Analysis of Single Photon Emitters in Hexagonal Boron Nitride
- URL: http://arxiv.org/abs/2504.11193v1
- Date: Tue, 15 Apr 2025 13:49:14 GMT
- Title: Time-Resolved Stokes Analysis of Single Photon Emitters in Hexagonal Boron Nitride
- Authors: Çağlar Samaner, Serkan Ateş,
- Abstract summary: We employ the Rotating Quarter-Wave Plate (RQWP) method to comprehensively characterize the polarization state of quantum emitters in hexagonal boron nitride (hBN)<n>Our results uncover intricate polarization dynamics in hBN emitters, offering insights that were previously inaccessible.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solid-state quantum emitters play a vital role in advancing quantum technologies, particularly in quantum computation and communication, where single-photon polarization acts as a fundamental information carrier. Precise polarization characterization is essential for understanding the mechanisms underlying polarization dynamics, which is critical for developing quantum emitters with minimized polarization-related errors. In this study, we employ the Rotating Quarter-Wave Plate (RQWP) method to comprehensively characterize the polarization state of quantum emitters in hexagonal boron nitride (hBN). By examining both time-averaged and dynamic polarization features, we demonstrate the time-resolved evolution of Stokes parameters from a solid-state single-photon emitter using the RQWP technique. This approach provides more complete polarization information than conventional micro-photoluminescence methods, without requiring modifications to the experimental setup. Our results uncover intricate polarization dynamics in hBN emitters, offering insights that were previously inaccessible. The techniques presented here can be broadly applied to polarization analysis of solid-state quantum emitters across various material platforms.
Related papers
- The multi-state geometry of shift current and polarization [44.99833362998488]
We employ quantum state projectors to develop an explicitly gauge-invariant formalism.
We provide a simple expression for the shift current that resolves its precise relation to the moments of electronic polarization.
We reveal its decomposition into the sum of the skewness of the occupied states and intrinsic multi-state geometry.
arXiv Detail & Related papers (2024-09-24T18:00:02Z) - Quantum Pair Generation in Nonlinear Metasurfaces with Mixed and Pure Photon Polarizations [0.09423257767158633]
We present a solution by achieving polarization engineering of frequency-nondegenerate biphotons emitted via spontaneous parametric down-conversion.
By performing a comprehensive polarization tomography, we demonstrate that the polarization of the emitted photons directly reflects the qBIC mode's far-field properties.
arXiv Detail & Related papers (2024-09-06T19:17:11Z) - Quantum-Enhanced Polarimetric Imaging [10.014885007014936]
We present a quantum polarimetric imaging system that integrates polarization-entangled photon pairs into a polarizer-sample-compensator-analyzer (PSRA)-type polarimeter.
Our system visualizes the birefringence properties of a periodical-distributed anisotropic material under decreasing illumination levels and diverse disturbing light sources.
arXiv Detail & Related papers (2024-08-08T03:08:08Z) - All-optical modulation with single-photons using electron avalanche [66.27103948750306]
We demonstrate all-optical modulation enabled by electron avalanche process in silicon.<n>Our approach opens the possibility of gigahertz-speed, and potentially even faster, optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - Polarization dynamics of solid-state quantum emitters [32.54627168659622]
Quantum emitters in solid-state crystals have attracted a lot of attention due to their simple applicability in optical quantum technologies.
polarization of single photons generated by quantum emitters is one of the key parameters that play a crucial role in the applications.
arXiv Detail & Related papers (2023-03-08T17:18:15Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Inverted fine structure of a 6H-SiC qubit enabling robust spin-photon
interface [0.0]
A type of silicon vacancy qubits in 6H-SiC possesses an unusual inverted fine structure.
This results in the directional emission of light along the hexagonal crystallographic axis, making photon extraction more efficient.
Our experimental and theoretical approaches provide a deep insight into the optical and spin properties of atomic-scale qubits in SiC.
arXiv Detail & Related papers (2021-07-14T20:58:22Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.