論文の概要: DeepSelective: Interpretable Prognosis Prediction via Feature Selection and Compression in EHR Data
- arxiv url: http://arxiv.org/abs/2504.11264v2
- Date: Fri, 20 Jun 2025 05:03:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-23 14:57:51.712072
- Title: DeepSelective: Interpretable Prognosis Prediction via Feature Selection and Compression in EHR Data
- Title(参考訳): Deep Selective: EHRデータの特徴選択と圧縮による解釈可能な予後予測
- Authors: Ruochi Zhang, Qian Yang, Xiaoyang Wang, Tian Wang, Qiong Zhou, Ziqi Deng, Kewei Li, Yueying Wang, Yusi Fan, Jiale Zhang, Lan Huang, Chang Liu, Fengfeng Zhou,
- Abstract要約: EHRデータを用いた患者予後予測のための新しいエンドツーエンドディープラーニングフレームワークであるDeepSelectiveを提案する。
DeepSelectiveは、データ圧縮技術と革新的な機能選択アプローチを組み合わせて、カスタム設計モジュールを統合する。
実験の結果,DeepSelectiveは予測精度を向上するだけでなく,解釈可能性も向上し,臨床診断に有用なツールであることがわかった。
- 参考スコア(独自算出の注目度): 26.378114734793492
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid accumulation of Electronic Health Records (EHRs) has transformed healthcare by providing valuable data that enhance clinical predictions and diagnoses. While conventional machine learning models have proven effective, they often lack robust representation learning and depend heavily on expert-crafted features. Although deep learning offers powerful solutions, it is often criticized for its lack of interpretability. To address these challenges, we propose DeepSelective, a novel end to end deep learning framework for predicting patient prognosis using EHR data, with a strong emphasis on enhancing model interpretability. DeepSelective combines data compression techniques with an innovative feature selection approach, integrating custom-designed modules that work together to improve both accuracy and interpretability. Our experiments demonstrate that DeepSelective not only enhances predictive accuracy but also significantly improves interpretability, making it a valuable tool for clinical decision-making. The source code is freely available at http://www.healthinformaticslab.org/supp/resources.php .
- Abstract(参考訳): 電子健康記録(EHR)の急速な蓄積は、臨床予測と診断を強化する貴重なデータを提供することによって、医療に変化をもたらした。
従来の機械学習モデルは有効であることが証明されているが、堅牢な表現学習が欠如しており、専門家が作成した機能に大きく依存していることが多い。
ディープラーニングは強力なソリューションを提供するが、解釈可能性の欠如によってしばしば批判される。
これらの課題に対処するために、EHRデータを用いて患者の予後を予測するための新しいエンドツーエンドディープラーニングフレームワークであるDeepSelectiveを提案し、モデルの解釈可能性の向上に重点を置いている。
DeepSelectiveは、データ圧縮技術と革新的な機能選択アプローチを組み合わせて、正確性と解釈性の両方を改善するために協調して動作するカスタム設計モジュールを統合する。
実験の結果,DeepSelectiveは予測精度を向上するだけでなく,解釈可能性も向上し,臨床診断に有用なツールであることがわかった。
ソースコードはhttp://www.healthinformaticslab.org/supp/resources.phpで無償公開されている。
関連論文リスト
- Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
本研究は,AI支援医療診断における信頼性の重要課題について論じる。
本研究は,診断に自信がなければ,診断システムによる意思決定の回避を可能にする選択予測手法に焦点をあてる。
我々は、選択予測タスクにおける信頼性を高めるための新しい最先端手法であるHUQ-2を紹介する。
論文 参考訳(メタデータ) (2025-02-25T10:15:21Z) - Hybrid Interpretable Deep Learning Framework for Skin Cancer Diagnosis: Integrating Radial Basis Function Networks with Explainable AI [1.1049608786515839]
皮膚がんは世界中で最も流行し、致命的な疾患の1つである。
本稿では,畳み込みニューラルネットワーク(CNN)とラジアル基底関数(RBF)ネットワークを統合するハイブリッドディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-24T19:19:02Z) - Bayesian Kolmogorov Arnold Networks (Bayesian_KANs): A Probabilistic Approach to Enhance Accuracy and Interpretability [1.90365714903665]
本研究では,Bayesian Kolmogorov Arnold Networks(BKANs)と呼ばれる新しいフレームワークを提案する。
BKANはコルモゴロフ・アーノルドネットワークの表現能力とベイズ推定を組み合わせたものである。
提案手法は,予測信頼度と決定境界に関する有用な知見を提供し,予測精度の観点から従来のディープラーニングモデルより優れている。
論文 参考訳(メタデータ) (2024-08-05T10:38:34Z) - How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
アーキテクチャとフレームワークのバイアスがモデルのパフォーマンスにどのように影響するかを示します。
実験では、プリプロセッシングと実装の選択に基づいて、最大20%の性能変化を示す。
我々は,現在の深層計算法と医療要件の相違点を同定する。
論文 参考訳(メタデータ) (2024-07-11T12:33:28Z) - An Interpretable Deep-Learning Framework for Predicting Hospital Readmissions From Electronic Health Records [1.9185059111021852]
本研究では,未計画の病院入退院を予測するための新しい,解釈可能な深層学習フレームワークを提案する。
実際のデータを用いて,30日と180日以内に病院入退院の2つの予測課題に関する枠組みを検証した。
我々のソリューションは、予測精度で従来の機械学習モデルより優れ、同時により解釈可能な結果を提供する。
論文 参考訳(メタデータ) (2023-10-16T08:48:52Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Rationale production to support clinical decision-making [31.66739991129112]
本稿では,病院の退院予測にInfoCalを適用した。
選択された解釈可能性を持つ各提示モデルや特徴重要度法は,それぞれ異なる結果をもたらす。
論文 参考訳(メタデータ) (2021-11-15T09:02:10Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Deep Transparent Prediction through Latent Representation Analysis [0.0]
本稿では,訓練されたディープニューラルネットワーク(DNN)から潜時情報を抽出し,予測目的のために効果的で統一された方法で解析された簡潔な表現を導出する,新しいディープラーニング手法を提案する。
透明性と高い予測精度を組み合わせることが、提案手法の目標である。
論文 参考訳(メタデータ) (2020-09-13T19:21:40Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。