The Obvious Invisible Threat: LLM-Powered GUI Agents' Vulnerability to Fine-Print Injections
- URL: http://arxiv.org/abs/2504.11281v1
- Date: Tue, 15 Apr 2025 15:21:09 GMT
- Title: The Obvious Invisible Threat: LLM-Powered GUI Agents' Vulnerability to Fine-Print Injections
- Authors: Chaoran Chen, Zhiping Zhang, Bingcan Guo, Shang Ma, Ibrahim Khalilov, Simret A Gebreegziabher, Yanfang Ye, Ziang Xiao, Yaxing Yao, Tianshi Li, Toby Jia-Jun Li,
- Abstract summary: A Large Language Model (LLM) powered GUI agent is a specialized autonomous system that performs tasks on the user's behalf according to high-level instructions.<n>To complete real-world tasks, such as filling forms or booking services, GUI agents often need to process and act on sensitive user data.<n>These attacks often exploit the discrepancy between visual saliency for agents and human users.
- Score: 21.322212760700957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Large Language Model (LLM) powered GUI agent is a specialized autonomous system that performs tasks on the user's behalf according to high-level instructions. It does so by perceiving and interpreting the graphical user interfaces (GUIs) of relevant apps, often visually, inferring necessary sequences of actions, and then interacting with GUIs by executing the actions such as clicking, typing, and tapping. To complete real-world tasks, such as filling forms or booking services, GUI agents often need to process and act on sensitive user data. However, this autonomy introduces new privacy and security risks. Adversaries can inject malicious content into the GUIs that alters agent behaviors or induces unintended disclosures of private information. These attacks often exploit the discrepancy between visual saliency for agents and human users, or the agent's limited ability to detect violations of contextual integrity in task automation. In this paper, we characterized six types of such attacks, and conducted an experimental study to test these attacks with six state-of-the-art GUI agents, 234 adversarial webpages, and 39 human participants. Our findings suggest that GUI agents are highly vulnerable, particularly to contextually embedded threats. Moreover, human users are also susceptible to many of these attacks, indicating that simple human oversight may not reliably prevent failures. This misalignment highlights the need for privacy-aware agent design. We propose practical defense strategies to inform the development of safer and more reliable GUI agents.
Related papers
- WASP: Benchmarking Web Agent Security Against Prompt Injection Attacks [36.97842000562324]
A benchmark called WASP introduces realistic web agent hijacking objectives and an isolated environment to test them.
Our evaluation shows that even AI agents backed by models with advanced reasoning capabilities are susceptible to low-effort human-written prompt injections.
Agents begin executing the adversarial instruction between 16 and 86% of the time but only achieve the goal between 0 and 17% of the time.
arXiv Detail & Related papers (2025-04-22T17:51:03Z) - Manipulating Multimodal Agents via Cross-Modal Prompt Injection [34.35145839873915]
We identify a critical yet previously overlooked security vulnerability in multimodal agents.
We propose CrossInject, a novel attack framework in which attackers embed adversarial perturbations across multiple modalities.
Our method outperforms existing injection attacks, achieving at least a +26.4% increase in attack success rates.
arXiv Detail & Related papers (2025-04-19T16:28:03Z) - Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
This survey examines the trustworthiness of GUI agents in five critical dimensions.<n>We identify major challenges such as vulnerability to adversarial attacks, cascading failure modes in sequential decision-making.<n>As GUI agents become more widespread, establishing robust safety standards and responsible development practices is essential.
arXiv Detail & Related papers (2025-03-30T13:26:00Z) - Safeguarding Mobile GUI Agent via Logic-based Action Verification [9.600552470104782]
We introduce VeriSafe Agent (VSA), a formal verification system that serves as a logically grounded safeguard for Mobile GUI Agents.<n> VSA is designed to deterministically ensure that an agent's actions strictly align with user intent before conducting an action.<n>We evaluate VSA's performance on 300 user instructions across 18 widely used mobile apps.
arXiv Detail & Related papers (2025-03-24T09:46:05Z) - The Task Shield: Enforcing Task Alignment to Defend Against Indirect Prompt Injection in LLM Agents [6.829628038851487]
Large Language Model (LLM) agents are increasingly being deployed as conversational assistants capable of performing complex real-world tasks through tool integration.<n>In particular, indirect prompt injection attacks pose a critical threat, where malicious instructions embedded within external data sources can manipulate agents to deviate from user intentions.<n>We propose a novel perspective that reframes agent security from preventing harmful actions to ensuring task alignment, requiring every agent action to serve user objectives.
arXiv Detail & Related papers (2024-12-21T16:17:48Z) - Attacking Vision-Language Computer Agents via Pop-ups [61.744008541021124]
We show that VLM agents can be easily attacked by a set of carefully designed adversarial pop-ups.
This distraction leads agents to click these pop-ups instead of performing the tasks as usual.
arXiv Detail & Related papers (2024-11-04T18:56:42Z) - MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.<n>We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.<n>We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - Air Gap: Protecting Privacy-Conscious Conversational Agents [44.04662124191715]
We introduce a novel threat model where adversarial third-party apps manipulate the context of interaction to trick LLM-based agents into revealing private information not relevant to the task at hand.
We introduce AirGapAgent, a privacy-conscious agent designed to prevent unintended data leakage by restricting the agent's access to only the data necessary for a specific task.
arXiv Detail & Related papers (2024-05-08T16:12:45Z) - CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation [61.68049335444254]
Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments.
We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP)
With our technical design, our agent achieves new state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios.
arXiv Detail & Related papers (2024-02-19T08:29:03Z) - Tell Me More! Towards Implicit User Intention Understanding of Language
Model Driven Agents [110.25679611755962]
Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions.
We introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries.
We empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals.
arXiv Detail & Related papers (2024-02-14T14:36:30Z) - Not what you've signed up for: Compromising Real-World LLM-Integrated
Applications with Indirect Prompt Injection [64.67495502772866]
Large Language Models (LLMs) are increasingly being integrated into various applications.
We show how attackers can override original instructions and employed controls using Prompt Injection attacks.
We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities.
arXiv Detail & Related papers (2023-02-23T17:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.