Differentially Private Geodesic and Linear Regression
- URL: http://arxiv.org/abs/2504.11304v1
- Date: Tue, 15 Apr 2025 15:45:48 GMT
- Title: Differentially Private Geodesic and Linear Regression
- Authors: Aditya Kulkarni, Carlos Soto,
- Abstract summary: In statistical applications it has become increasingly common to encounter data structures that live on non-linear spaces such as manifold.<n>We consider releasing Differentially Private (DP) parameters of geodesic regression via the K-Norm Gradient (KNG) mechanism.
- Score: 1.4656078321003652
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In statistical applications it has become increasingly common to encounter data structures that live on non-linear spaces such as manifolds. Classical linear regression, one of the most fundamental methodologies of statistical learning, captures the relationship between an independent variable and a response variable which both are assumed to live in Euclidean space. Thus, geodesic regression emerged as an extension where the response variable lives on a Riemannian manifold. The parameters of geodesic regression, as with linear regression, capture the relationship of sensitive data and hence one should consider the privacy protection practices of said parameters. We consider releasing Differentially Private (DP) parameters of geodesic regression via the K-Norm Gradient (KNG) mechanism for Riemannian manifolds. We derive theoretical bounds for the sensitivity of the parameters showing they are tied to their respective Jacobi fields and hence the curvature of the space. This corroborates recent findings of differential privacy for the Fr\'echet mean. We demonstrate the efficacy of our methodology on the sphere, $\mbS^2\subset\mbR^3$ and, since it is general to Riemannian manifolds, the manifold of Euclidean space which simplifies geodesic regression to a case of linear regression. Our methodology is general to any Riemannian manifold and thus it is suitable for data in domains such as medical imaging and computer vision.
Related papers
- Intrinsic Gaussian Process Regression Modeling for Manifold-valued Response Variable [6.137918306133745]
We propose a novel intrinsic Gaussian process regression model for manifold-valued data.<n>We establish the properties of the proposed models, including information consistency and posterior consistency.<n> Numerical studies, including simulation and real examples, indicate that the proposed methods work well.
arXiv Detail & Related papers (2024-11-28T08:27:59Z) - RMLR: Extending Multinomial Logistic Regression into General Geometries [64.16104856124029]
Our framework only requires minimal geometric properties, thus exhibiting broad applicability.
We develop five families of SPD MLRs under five types of power-deformed metrics.
On rotation matrices we propose Lie MLR based on the popular bi-invariant metric.
arXiv Detail & Related papers (2024-09-28T18:38:21Z) - Deep Fréchet Regression [4.915744683251151]
We propose a flexible regression model capable of handling high-dimensional predictors without imposing parametric assumptions.
The proposed model outperforms existing methods for non-Euclidean responses.
arXiv Detail & Related papers (2024-07-31T07:54:14Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Linear Regression on Manifold Structured Data: the Impact of Extrinsic
Geometry on Solutions [4.8234611688915665]
We study linear regression applied to data structured on a manifold.
We analyze the impact of the manifold's curvatures on the uniqueness of the regression solution.
arXiv Detail & Related papers (2023-07-05T17:51:26Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
We propose a novel random forest weighted local Fr'echet regression paradigm.<n>Our first method uses these weights as the local average to solve the conditional Fr'echet mean.<n>Second method performs local linear Fr'echet regression, both significantly improving existing Fr'echet regression methods.
arXiv Detail & Related papers (2022-02-10T09:10:59Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
offline reinforcement learning approaches can be divided into proximal and uncertainty-aware methods.
In this work, we demonstrate the benefit of combining the two in a latent variational model.
Our proposed metrics measure both the quality of out of distribution samples as well as the discrepancy of examples in the data.
arXiv Detail & Related papers (2021-02-22T19:42:40Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
A principled way to model nonlinear geometric structure inherent in data is provided.
However, these operations are typically computationally demanding.
In particular, we focus on Bayesian quadrature (BQ) to numerically compute integrals over normal laws.
We show that by leveraging both prior knowledge and an active exploration scheme, BQ significantly reduces the number of required evaluations.
arXiv Detail & Related papers (2021-02-12T17:38:04Z) - Robust Geodesic Regression [6.827783641211451]
We use M-type estimators, including the $L_1$, Huber and Tukey biweight estimators, to perform robust geodesic regression.
Results from numerical examples, including analysis of real neuroimaging data, demonstrate the promising empirical properties of the proposed approach.
arXiv Detail & Related papers (2020-07-09T02:41:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.