Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation
- URL: http://arxiv.org/abs/2507.11789v1
- Date: Tue, 15 Jul 2025 23:08:14 GMT
- Title: Enforcing Latent Euclidean Geometry in Single-Cell VAEs for Manifold Interpolation
- Authors: Alessandro Palma, Sergei Rybakov, Leon Hetzel, Stephan Günnemann, Fabian J. Theis,
- Abstract summary: We introduce FlatVI, a training framework that regularises the latent manifold of discrete-likelihood variational autoencoders towards Euclidean geometry.<n>By encouraging straight lines in the latent space to approximate geodesics on the decoded single-cell manifold, FlatVI enhances compatibility with downstream approaches.
- Score: 79.27003481818413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Latent space interpolations are a powerful tool for navigating deep generative models in applied settings. An example is single-cell RNA sequencing, where existing methods model cellular state transitions as latent space interpolations with variational autoencoders, often assuming linear shifts and Euclidean geometry. However, unless explicitly enforced, linear interpolations in the latent space may not correspond to geodesic paths on the data manifold, limiting methods that assume Euclidean geometry in the data representations. We introduce FlatVI, a novel training framework that regularises the latent manifold of discrete-likelihood variational autoencoders towards Euclidean geometry, specifically tailored for modelling single-cell count data. By encouraging straight lines in the latent space to approximate geodesic interpolations on the decoded single-cell manifold, FlatVI enhances compatibility with downstream approaches that assume Euclidean latent geometry. Experiments on synthetic data support the theoretical soundness of our approach, while applications to time-resolved single-cell RNA sequencing data demonstrate improved trajectory reconstruction and manifold interpolation.
Related papers
- Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds [18.156807299614503]
We introduce Geometry-Aware Generative Autoencoder (GAGA), a novel framework that combines manifold learning with generative modeling.<n>GAGA shows competitive performance in simulated and real-world datasets, including a 30% improvement over the state-of-the-art methods in single-cell population-level trajectory inference.
arXiv Detail & Related papers (2024-10-16T17:53:26Z) - Thinner Latent Spaces: Detecting Dimension and Imposing Invariance with Conformal Autoencoders [8.743941823307967]
We show that orthogonality relations within the latent layer of the network can be leveraged to infer the intrinsic dimensionality of nonlinear manifold data sets.<n>We outline the relevant theory relying on differential geometry, and describe the corresponding gradient-descent optimization algorithm.
arXiv Detail & Related papers (2024-08-28T20:56:35Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
We propose a more general heat kernel based manifold embedding method that we call heat geodesic embeddings.
Results show that our method outperforms existing state of the art in preserving ground truth manifold distances.
We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure.
arXiv Detail & Related papers (2023-05-30T13:58:50Z) - Exploring Data Geometry for Continual Learning [64.4358878435983]
We study continual learning from a novel perspective by exploring data geometry for the non-stationary stream of data.
Our method dynamically expands the geometry of the underlying space to match growing geometric structures induced by new data.
Experiments show that our method achieves better performance than baseline methods designed in Euclidean space.
arXiv Detail & Related papers (2023-04-08T06:35:25Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z) - LOCA: LOcal Conformal Autoencoder for standardized data coordinates [6.608924227377152]
We present a method for learning an embedding in $mathbbRd$ that is isometric to the latent variables of the manifold.
Our embedding is obtained using a LOcal Conformal Autoencoder (LOCA), an algorithm that constructs an embedding to rectify deformations.
We also apply LOCA to single-site Wi-Fi localization data, and to $3$-dimensional curved surface estimation.
arXiv Detail & Related papers (2020-04-15T17:49:37Z) - Uniform Interpolation Constrained Geodesic Learning on Data Manifold [28.509561636926414]
Along the learned geodesic, our method can generate high-qualitys between two given data samples.
We provide a theoretical analysis of our model and use image translation as an example to demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2020-02-12T07:47:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.