Context-Aware Palmprint Recognition via a Relative Similarity Metric
- URL: http://arxiv.org/abs/2504.11306v1
- Date: Tue, 15 Apr 2025 15:46:17 GMT
- Title: Context-Aware Palmprint Recognition via a Relative Similarity Metric
- Authors: Trinnhallen Brisley, Aryan Gandhi, Joseph Magen,
- Abstract summary: We propose a new approach to matching mechanism for palmprint recognition by introducing a Relative Similarity Metric (RSM)<n>RSM captures how a pairwise similarity compares within the context of the entire dataset.<n>Our method achieves a new state-of-the-art 0.000036% Equal Error Rate (EER) on the Tongji dataset, outperforming previous methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new approach to matching mechanism for palmprint recognition by introducing a Relative Similarity Metric (RSM) that enhances the robustness and discriminability of existing matching frameworks. While conventional systems rely on direct pairwise similarity measures, such as cosine or Euclidean distances, these metrics fail to capture how a pairwise similarity compares within the context of the entire dataset. Our method addresses this by evaluating the relative consistency of similarity scores across up to all identities, allowing for better suppression of false positives and negatives. Applied atop the CCNet architecture, our method achieves a new state-of-the-art 0.000036% Equal Error Rate (EER) on the Tongji dataset, outperforming previous methods and demonstrating the efficacy of incorporating relational structure into the palmprint matching process.
Related papers
- Measuring similarity between embedding spaces using induced neighborhood graphs [10.056989400384772]
We propose a metric to evaluate the similarity between paired item representations.
Our results show that accuracy in both analogy and zero-shot classification tasks correlates with the embedding similarity.
arXiv Detail & Related papers (2024-11-13T15:22:33Z) - Rethinking Distance Metrics for Counterfactual Explainability [53.436414009687]
We investigate a framing for counterfactual generation methods that considers counterfactuals not as independent draws from a region around the reference, but as jointly sampled with the reference from the underlying data distribution.
We derive a distance metric, tailored for counterfactual similarity that can be applied to a broad range of settings.
arXiv Detail & Related papers (2024-10-18T15:06:50Z) - Differentiable Optimization of Similarity Scores Between Models and Brains [1.5391321019692434]
Similarity measures such as linear regression, Centered Kernel Alignment (CKA), Normalized Bures Similarity (NBS), and angular Procrustes distance are often used to quantify this similarity.<n>Here, we introduce a novel tool to investigate what drives high similarity scores and what constitutes a "good" score.<n>Surprisingly, we find that high similarity scores do not guarantee encoding task-relevant information in a manner consistent with neural data.
arXiv Detail & Related papers (2024-07-09T17:31:47Z) - Cluster-Aware Similarity Diffusion for Instance Retrieval [64.40171728912702]
Diffusion-based re-ranking is a common method used for retrieving instances by performing similarity propagation in a nearest neighbor graph.<n>We propose a novel Cluster-Aware Similarity (CAS) diffusion for instance retrieval.
arXiv Detail & Related papers (2024-06-04T14:19:50Z) - REBAR: Retrieval-Based Reconstruction for Time-series Contrastive Learning [64.08293076551601]
We propose a novel method of using a learned measure for identifying positive pairs.
Our Retrieval-Based Reconstruction measure measures the similarity between two sequences.
We show that the REBAR error is a predictor of mutual class membership.
arXiv Detail & Related papers (2023-11-01T13:44:45Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Attributable Visual Similarity Learning [90.69718495533144]
This paper proposes an attributable visual similarity learning (AVSL) framework for a more accurate and explainable similarity measure between images.
Motivated by the human semantic similarity cognition, we propose a generalized similarity learning paradigm to represent the similarity between two images with a graph.
Experiments on the CUB-200-2011, Cars196, and Stanford Online Products datasets demonstrate significant improvements over existing deep similarity learning methods.
arXiv Detail & Related papers (2022-03-28T17:35:31Z) - Refining Self-Supervised Learning in Imaging: Beyond Linear Metric [25.96406219707398]
We introduce in this paper a new statistical perspective, exploiting the Jaccard similarity metric, as a measure-based metric.
Specifically, our proposed metric may be interpreted as a dependence measure between two adapted projections learned from the so-called latent representations.
To the best of our knowledge, this effectively non-linearly fused information embedded in the Jaccard similarity, is novel to self-supervision learning with promising results.
arXiv Detail & Related papers (2022-02-25T19:25:05Z) - Deconfounded Representation Similarity for Comparison of Neural Networks [16.23053104309891]
Similarity metrics are confounded by the population structure of data items in the input space.
We show that deconfounding the similarity metrics increases the resolution of detecting semantically similar neural networks.
arXiv Detail & Related papers (2022-01-31T21:25:02Z) - A Statistical Analysis of Summarization Evaluation Metrics using
Resampling Methods [60.04142561088524]
We find that the confidence intervals are rather wide, demonstrating high uncertainty in how reliable automatic metrics truly are.
Although many metrics fail to show statistical improvements over ROUGE, two recent works, QAEval and BERTScore, do in some evaluation settings.
arXiv Detail & Related papers (2021-03-31T18:28:14Z) - Document Similarity from Vector Space Densities [0.0]
We propose a method for estimating similarities between text documents.
The method is based on a word embedding in a high-dimensional Euclidean space and on kernel regression.
We find that the accuracy of this method is virtually the same as that of a state-of-the-art method, while the gain in speed is very substantial.
arXiv Detail & Related papers (2020-09-01T19:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.