論文の概要: Big Brother is Watching: Proactive Deepfake Detection via Learnable Hidden Face
- arxiv url: http://arxiv.org/abs/2504.11309v1
- Date: Tue, 15 Apr 2025 15:50:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:09:37.312372
- Title: Big Brother is Watching: Proactive Deepfake Detection via Learnable Hidden Face
- Title(参考訳): ビッグブラザーが目指すのは、学習可能な隠れ顔による能動的ディープフェイク検出
- Authors: Hongbo Li, Shangchao Yang, Ruiyang Xia, Lin Yuan, Xinbo Gao,
- Abstract要約: シークレットテンプレートイメージは、悪意のあるイメージ偽造の指標監視として、ホストイメージに認識不能に埋め込まれる。
ステガノグラフィ画像が悪質に改ざんされているか、良質に処理されているかを正確に識別するために、ロバスト検出器が構築される。
- 参考スコア(独自算出の注目度): 40.40196403891759
- License:
- Abstract: As deepfake technologies continue to advance, passive detection methods struggle to generalize with various forgery manipulations and datasets. Proactive defense techniques have been actively studied with the primary aim of preventing deepfake operation effectively working. In this paper, we aim to bridge the gap between passive detection and proactive defense, and seek to solve the detection problem utilizing a proactive methodology. Inspired by several watermarking-based forensic methods, we explore a novel detection framework based on the concept of ``hiding a learnable face within a face''. Specifically, relying on a semi-fragile invertible steganography network, a secret template image is embedded into a host image imperceptibly, acting as an indicator monitoring for any malicious image forgery when being restored by the inverse steganography process. Instead of being manually specified, the secret template is optimized during training to resemble a neutral facial appearance, just like a ``big brother'' hidden in the image to be protected. By incorporating a self-blending mechanism and robustness learning strategy with a simulative transmission channel, a robust detector is built to accurately distinguish if the steganographic image is maliciously tampered or benignly processed. Finally, extensive experiments conducted on multiple datasets demonstrate the superiority of the proposed approach over competing passive and proactive detection methods.
- Abstract(参考訳): ディープフェイク技術が進歩を続けるにつれ、受動的検出手法は様々な偽造操作やデータセットの一般化に苦慮している。
プロアクティブディフェンス技術は、ディープフェイク作業が効果的に動作するのを防ぐために、主に研究されている。
本稿では,受動的検出と積極的防御のギャップを埋めることを目的として,積極的手法を用いて検出問題を解くことを目的とする。
いくつかの透かしに基づく法医学的手法に着想を得て、「顔の中に学習可能な顔を隠す」という概念に基づく新しい検出枠組みを探求する。
具体的には、半フレジブル非可逆ステガノグラフィネットワークに頼り、逆ステガノグラフィプロセスにより復元された際の悪意ある画像偽造の指標監視として、秘密テンプレート画像がホスト画像に挿入される。
手動で指定する代わりに、シークレットテンプレートは、画像に隠された‘大きな兄弟’のように、中立的な顔の外観に似るようにトレーニング中に最適化される。
自己ブロード機構とロバストネス学習戦略を模擬伝送路に組み込むことにより、ステガノグラフ画像が悪質に改ざんされているか、良質に処理されているかを正確に識別するロバスト検出器を構築する。
最後に、複数のデータセットに対して行われた広範な実験は、競合する受動的および能動的検出法よりも提案手法が優れていることを示す。
関連論文リスト
- Facial Features Matter: a Dynamic Watermark based Proactive Deepfake Detection Approach [11.51480331713537]
本稿では,顔特徴に基づく能動的深度検出法(FaceProtect)を提案する。
本稿では,128次元顔特徴ベクトルを入力として利用するGODWGM(One-way Dynamic Watermark Generating Mechanism)を提案する。
また, ステガノグラフィとGODWGMを併用し, ベンチマーク透かしの同時送信を可能にするWatermark-based Verification Strategy (WVS)を提案する。
論文 参考訳(メタデータ) (2024-11-22T08:49:08Z) - Natias: Neuron Attribution based Transferable Image Adversarial Steganography [62.906821876314275]
逆行性ステガナグラフィーは、ディープラーニングに基づくステガナリシスを効果的に欺く能力から、かなりの注目を集めている。
そこで我々は,Natias という新たな逆向きステガノグラフィー手法を提案する。
提案手法は既存の逆向きステガノグラフィーフレームワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2024-09-08T04:09:51Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Robust Identity Perceptual Watermark Against Deepfake Face Swapping [8.276177968730549]
ディープフェイク・フェイススワップは、ディープジェネレーティブ・モデルの急速な開発で重要なプライバシー問題を引き起こしている。
本稿では,Deepfakeの顔スワップに対する検出とソーストレースを同時に行う,最初の堅牢なアイデンティティ認識型透かしフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-02T16:04:32Z) - On the Vulnerability of DeepFake Detectors to Attacks Generated by
Denoising Diffusion Models [0.5827521884806072]
我々は,最新の生成手法によって生成されたブラックボックス攻撃に対する単一イメージのディープフェイク検出器の脆弱性について検討した。
われわれの実験はFaceForensics++で行われている。
以上の結果から,ディープフェイクの再建過程において,1段階の偏微分拡散のみを用いることで,検出可能性を大幅に低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-11T15:57:51Z) - Building an Invisible Shield for Your Portrait against Deepfakes [34.65356811439098]
本稿では,画像のプロアクティブな保護を目的とした新しいフレームワーク,Integity Encryptorを提案する。
提案手法では,重要な顔属性と密接な関係を持つメッセージを,秘密に符号化する。
修正された顔属性は、デコードされたメッセージの比較を通じて、操作された画像を検出する手段として機能する。
論文 参考訳(メタデータ) (2023-05-22T10:01:28Z) - Information-containing Adversarial Perturbation for Combating Facial
Manipulation Systems [19.259372985094235]
ディープラーニングシステムの悪意ある応用は個人のプライバシーと評判に深刻な脅威をもたらす。
IAP(Information- containing Adversarial Perturbation)と呼ばれる新しい2層保護手法を提案する。
エンコーダを用いて、顔画像とその識別メッセージを、複数の顔操作システムを妨害できるクロスモデル対向例にマッピングする。
論文 参考訳(メタデータ) (2023-03-21T06:48:14Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
本稿では,ロバスト検出器 (RobustDet) を提案する。
本モデルは, クリーン画像の検出能力を維持しながら, 傾きを効果的に解き, 検出堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2022-07-13T13:59:59Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
本稿では,画像中の偽造顔を効率的に検出する,概念的にシンプルだが効果的な方法を提案する。
提案手法は,画像に関する意味の高い意味情報を提供するセグメンテーションマップに依存する。
提案モデルでは,最先端検出精度と顕著なローカライゼーション性能を実現する。
論文 参考訳(メタデータ) (2021-07-13T02:59:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。