Neural Networks for on-chip Model Predictive Control: a Method to Build Optimized Training Datasets and its application to Type-1 Diabetes
- URL: http://arxiv.org/abs/2504.11355v1
- Date: Tue, 15 Apr 2025 16:25:06 GMT
- Title: Neural Networks for on-chip Model Predictive Control: a Method to Build Optimized Training Datasets and its application to Type-1 Diabetes
- Authors: Alberto Castillo, Elliot Pryor, Anas El Fathi, Boris Kovatchev, Marc Breton,
- Abstract summary: Training Neural Networks (NNs) to behave as Model Predictive Control (MPC) algorithms is an effective way to implement them in constrained embedded devices.<n>We introduce the concept of Optimally-Sampled datasets (OSDs) as ideal training sets and present an efficient algorithm for generating them.<n>We demonstrate the effectiveness of OSDs by training NNs to replicate the University of Virginia's MPC algorithm for automated insulin delivery in Type-1 Diabetes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training Neural Networks (NNs) to behave as Model Predictive Control (MPC) algorithms is an effective way to implement them in constrained embedded devices. By collecting large amounts of input-output data, where inputs represent system states and outputs are MPC-generated control actions, NNs can be trained to replicate MPC behavior at a fraction of the computational cost. However, although the composition of the training data critically influences the final NN accuracy, methods for systematically optimizing it remain underexplored. In this paper, we introduce the concept of Optimally-Sampled Datasets (OSDs) as ideal training sets and present an efficient algorithm for generating them. An OSD is a parametrized subset of all the available data that (i) preserves existing MPC information up to a certain numerical resolution, (ii) avoids duplicate or near-duplicate states, and (iii) becomes saturated or complete. We demonstrate the effectiveness of OSDs by training NNs to replicate the University of Virginia's MPC algorithm for automated insulin delivery in Type-1 Diabetes, achieving a four-fold improvement in final accuracy. Notably, two OSD-trained NNs received regulatory clearance for clinical testing as the first NN-based control algorithm for direct human insulin dosing. This methodology opens new pathways for implementing advanced optimizations on resource-constrained embedded platforms, potentially revolutionizing how complex algorithms are deployed.
Related papers
- Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation [105.23631749213729]
We propose a novel method for unsupervised pre-training in low-data regimes.
Inspired by the recently successful prompting technique, we introduce a new method, Unsupervised Pre-training with Language-Vision Prompts.
We show that our method can converge faster and perform better than CNN-based models in low-data regimes.
arXiv Detail & Related papers (2024-05-22T06:48:43Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Enhanced quantum state preparation via stochastic prediction of neural
network [0.8287206589886881]
In this paper, we explore an intriguing avenue for enhancing algorithm effectiveness through exploiting the knowledge blindness of neural network.
Our approach centers around a machine learning algorithm utilized for preparing arbitrary quantum states in a semiconductor double quantum dot system.
By leveraging prediction generated by the neural network, we are able to guide the optimization process to escape local optima.
arXiv Detail & Related papers (2023-07-27T09:11:53Z) - Emulation Learning for Neuromimetic Systems [0.0]
Building on our recent research on neural quantization systems, results on learning quantized motions and resilience to channel dropouts are reported.
We propose a general Deep Q Network (DQN) algorithm that can not only learn the trajectory but also exhibit the advantages of resilience to channel dropout.
arXiv Detail & Related papers (2023-05-04T22:47:39Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Low-Resource Music Genre Classification with Cross-Modal Neural Model
Reprogramming [129.4950757742912]
We introduce a novel method for leveraging pre-trained models for low-resource (music) classification based on the concept of Neural Model Reprogramming (NMR)
NMR aims at re-purposing a pre-trained model from a source domain to a target domain by modifying the input of a frozen pre-trained model.
Experimental results suggest that a neural model pre-trained on large-scale datasets can successfully perform music genre classification by using this reprogramming method.
arXiv Detail & Related papers (2022-11-02T17:38:33Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the optimization and control of fluid mechanical systems.
It combines a novel, "degenerate" version of the prototypical policy optimization (PPO) algorithm, that trains a neural network in optimizing the system only once per learning episode.
arXiv Detail & Related papers (2020-06-04T16:11:26Z) - On Training and Evaluation of Neural Network Approaches for Model
Predictive Control [9.8918553325509]
This paper is a framework for training and evaluation of Model Predictive Control (MPC) implemented using constrained neural networks.
The motivation is to replace real-time optimization in safety critical feedback control systems with learnt mappings in the form of neural networks with optimization layers.
arXiv Detail & Related papers (2020-05-08T15:37:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.