論文の概要: DeepMath-103K: A Large-Scale, Challenging, Decontaminated, and Verifiable Mathematical Dataset for Advancing Reasoning
- arxiv url: http://arxiv.org/abs/2504.11456v2
- Date: Thu, 22 May 2025 19:12:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 15:51:02.941696
- Title: DeepMath-103K: A Large-Scale, Challenging, Decontaminated, and Verifiable Mathematical Dataset for Advancing Reasoning
- Title(参考訳): DeepMath-103K: Reasoningを改良するための大規模・複雑化・非汚染化・検証可能な数学的データセット
- Authors: Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian Yu, Zhenwen Liang, Wenxuan Wang, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, Dong Yu,
- Abstract要約: DeepMath-103Kは、高い難易度(主に5-9レベル)で設計された大規模な数学的データセットである
これには、多数のベンチマークに対する厳格な除染、ルールベースのRL報酬に対する検証可能な回答が含まれる。
DeepMath-103Kは一般化可能な推論の進展を促進する。
- 参考スコア(独自算出の注目度): 95.31714779585272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning (RL) with large language models shows promise in complex reasoning. However, its progress is hindered by the lack of large-scale training data that is sufficiently challenging, contamination-free and verifiable. To this end, we introduce DeepMath-103K, a large-scale mathematical dataset designed with high difficulty (primarily levels 5-9), rigorous decontamination against numerous benchmarks, and verifiable answers for rule-based RL reward. It further includes three distinct R1 solutions adaptable for diverse training paradigms such as supervised fine-tuning (SFT). Spanning a wide range of mathematical topics, DeepMath-103K fosters the development of generalizable and advancing reasoning. Notably, models trained on DeepMath-103K achieve state-of-the-art results on challenging mathematical benchmarks and demonstrate generalization beyond math such as biology, physics and chemistry, underscoring its broad efficacy. Data: https://huggingface.co/datasets/zwhe99/DeepMath-103K.
- Abstract(参考訳): 大規模言語モデルを用いた強化学習(RL)は複雑な推論において有望である。
しかし、その進歩は、十分に困難な、汚染のない、検証可能な大規模なトレーニングデータの欠如によって妨げられている。
この目的のために、DeepMath-103Kを導入し、高い難易度(主に5-9レベル)で設計された大規模な数学的データセット、多数のベンチマークに対する厳密な除染、ルールベースのRL報酬に対する検証可能な回答を紹介した。
さらに、教師付き微調整(SFT)のような多様な訓練パラダイムに適合する3つのR1ソリューションを含んでいる。
DeepMath-103Kは、幅広い数学的トピックを拡大し、一般化可能で進歩的な推論の開発を後押ししている。
特に、DeepMath-103Kでトレーニングされたモデルは、挑戦的な数学ベンチマークの最先端の結果を達成し、生物学、物理学、化学といった数学を超えた一般化を実証し、その幅広い効果を裏付ける。
データ:https://huggingface.co/datasets/zwhe99/DeepMath-103K。
関連論文リスト
- Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning [66.43194385702297]
大規模言語モデル(LLM)は、特に強化学習(RL)を通じて強化された場合、強力な推論能力を示している。
NEMOTRON-CROSSTHINKは、多領域コーパスを体系的に組み込んだフレームワークであり、合成および実世界の問合せ対を含む。
論文 参考訳(メタデータ) (2025-04-15T21:37:13Z) - PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models [59.920971312822736]
本稿では,高品質なオリンピアードレベルの数学問題を自動生成する新しい手法であるPromptCoTを紹介する。
提案手法は,問題構築の背景にある数学的概念と理論的根拠に基づいて複雑な問題を合成する。
提案手法は, GSM8K, MATH-500, AIME2024などの標準ベンチマークで評価され, 既存の問題生成手法を一貫して上回っている。
論文 参考訳(メタデータ) (2025-03-04T06:32:30Z) - Diverse Inference and Verification for Advanced Reasoning [19.88677753421871]
OpenAI o1、o3、DeepSeek R1のようなLLMの推論は数学とコーディングに大きな進歩をもたらした。
テスト時に複数のモデルとメソッドを組み合わせる、さまざまな推論アプローチを使用します。
数学や符号問題の検証や他の問題に対する拒絶サンプリングは簡単かつ効果的であることがわかった。
論文 参考訳(メタデータ) (2025-02-14T07:22:25Z) - Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning [65.2421542320293]
推論能力は汎用知能の重要な構成要素である。
OpenAIのoシリーズモデルなどのプロプライエタリ企業による最近の進歩は、推論タスクに顕著な進歩をもたらした。
本稿では、数学的推論タスクのための textbfOutcome textbfREwtextbfArd ベースの強化 textbfLearning により達成できる性能限界を追求する新しい RL フレームワーク OREAL を提案する。
論文 参考訳(メタデータ) (2025-02-10T18:57:29Z) - UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models [11.964085209696051]
UGMathBenchは16の被験者5,062の課題と111のトピックで構成され、10の異なる回答タイプが特徴である。
それぞれの問題には3つのランダム化バージョンが含まれており、主要なオープンソース LLM が UGMathBench で飽和するにつれて、リリースに向けて追加バージョンが計画されている。
LLMを23個評価した結果, OpenAI-o1-mini による EAcc のロバスト性は 56.3% であり,それぞれ異なるモデルで大きな$Delta$値が観測された。
論文 参考訳(メタデータ) (2025-01-23T15:46:43Z) - Formal Mathematical Reasoning: A New Frontier in AI [60.26950681543385]
我々は公式な数学的推論を提唱し、AI4Mathを次のレベルに進めるには不可欠であると主張している。
既存の進捗を要約し、オープンな課題について議論し、将来の成功を測るための重要なマイルストーンを想定します。
論文 参考訳(メタデータ) (2024-12-20T17:19:24Z) - UTMath: Math Evaluation with Unit Test via Reasoning-to-Coding Thoughts [7.856746367263317]
本稿では,大規模言語モデルの評価を目的とした頑健な評価フレームワークであるUTMath Benchmarkを紹介する。
これは9つの数学領域にまたがる1053個の最先端問題を含み、平均68個のテストケースがある。
最高の性能モデルであるo1-miniはわずか32.57%の問題を解き、o1-previewは27.16%、GPT-4oは26.93%であった。
論文 参考訳(メタデータ) (2024-11-11T18:59:02Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning [110.80663974060624]
キーポイント駆動型データ合成(KPDDS)は質問応答対を合成する新しいデータ合成フレームワークである。
KPDDSは厳格な品質管理と相当なスケーラビリティを備えた新しい質問の生成を保証する。
KPMathは,800万以上の質問応答対から構成される,数学的推論に適した広範囲な合成データセットである。
論文 参考訳(メタデータ) (2024-03-04T18:58:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。