論文の概要: Toward Aligning Human and Robot Actions via Multi-Modal Demonstration Learning
- arxiv url: http://arxiv.org/abs/2504.11493v1
- Date: Mon, 14 Apr 2025 21:14:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:40:24.212524
- Title: Toward Aligning Human and Robot Actions via Multi-Modal Demonstration Learning
- Title(参考訳): マルチモーダルデモ学習による人間とロボットの行動調整に向けて
- Authors: Azizul Zahid, Jie Fan, Farong Wang, Ashton Dy, Sai Swaminathan, Fei Liu,
- Abstract要約: 本稿では,Voxelized RGB-D空間におけるロボットデモを用いて,RGBビデオから人間デモを明示的にモデル化するフレームワークを提案する。
本稿では,人間の意図モデリングのためのResNetベースの視覚符号化と,ボクセルに基づくロボット行動予測のためのPerceiver Transformerを組み合わせる。
- 参考スコア(独自算出の注目度): 3.9738951919572827
- License:
- Abstract: Understanding action correspondence between humans and robots is essential for evaluating alignment in decision-making, particularly in human-robot collaboration and imitation learning within unstructured environments. We propose a multimodal demonstration learning framework that explicitly models human demonstrations from RGB video with robot demonstrations in voxelized RGB-D space. Focusing on the "pick and place" task from the RH20T dataset, we utilize data from 5 users across 10 diverse scenes. Our approach combines ResNet-based visual encoding for human intention modeling and a Perceiver Transformer for voxel-based robot action prediction. After 2000 training epochs, the human model reaches 71.67% accuracy, and the robot model achieves 71.8% accuracy, demonstrating the framework's potential for aligning complex, multimodal human and robot behaviors in manipulation tasks.
- Abstract(参考訳): 人間とロボットの行動対応を理解することは、特に非構造環境における人間とロボットの協調や模倣学習において、意思決定におけるアライメントを評価する上で不可欠である。
本稿では,Voxelized RGB-D空間におけるロボットによる実演によるRGBビデオからの人間の実演を明示的にモデル化するマルチモーダルな実演学習フレームワークを提案する。
RH20Tデータセットの"ピック・アンド・プレイス"タスクに着目して,10の異なるシーンにわたる5ユーザのデータを活用する。
本稿では,人間の意図モデリングのためのResNetベースの視覚符号化と,ボクセルに基づくロボット行動予測のためのPerceiver Transformerを組み合わせる。
2000年の訓練後、人間のモデルは71.67%の精度に達し、ロボットモデルは71.8%の精度を達成する。
関連論文リスト
- Mitigating the Human-Robot Domain Discrepancy in Visual Pre-training for Robotic Manipulation [16.809190349155525]
そこで本研究では,容易に利用可能な人間ロボットのビデオデータを利用して,ドメインギャップを埋める新しい適応パラダイムを提案する。
提案手法では,人間とロボットのビデオのセマンティクスを整列させるために,人間ロボットのアライメント損失を用いて,事前学習したモデルをパラメータ効率よくロボット領域に適応させる。
論文 参考訳(メタデータ) (2024-06-20T11:57:46Z) - MimicGen: A Data Generation System for Scalable Robot Learning using
Human Demonstrations [55.549956643032836]
MimicGenは、少数の人間のデモから大規模でリッチなデータセットを自動的に合成するシステムである。
ロボットエージェントは,この生成したデータセットを模倣学習により効果的に訓練し,長期的・高精度なタスクにおいて高い性能を達成することができることを示す。
論文 参考訳(メタデータ) (2023-10-26T17:17:31Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
我々は、人間がどこでどのように対話するかを推定する視覚的余裕モデルを訓練する。
これらの行動割当の構造は、ロボットが多くの複雑なタスクを直接実行できるようにする。
私たちは、VRBと呼ばれる4つの現実世界環境、10以上のタスクと2つのロボットプラットフォームにおいて、私たちのアプローチの有効性を示します。
論文 参考訳(メタデータ) (2023-04-17T17:59:34Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Few-Shot Visual Grounding for Natural Human-Robot Interaction [0.0]
本稿では,人間ユーザによって音声で示される,混み合ったシーンから対象物を分割するソフトウェアアーキテクチャを提案する。
システムのコアでは、視覚的な接地のためにマルチモーダルディープニューラルネットワークを使用します。
公開シーンデータセットから収集した実RGB-Dデータに対して,提案モデルの性能を評価する。
論文 参考訳(メタデータ) (2021-03-17T15:24:02Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。