論文の概要: IEA-Plugin: An AI Agent Reasoner for Test Data Analytics
- arxiv url: http://arxiv.org/abs/2504.11496v1
- Date: Mon, 14 Apr 2025 22:01:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 18:06:38.962313
- Title: IEA-Plugin: An AI Agent Reasoner for Test Data Analytics
- Title(参考訳): IEA-Plugin: テストデータ分析のためのAIエージェントReasoner
- Authors: Seoyeon Kim, Yu Su, Li-C. Wang,
- Abstract要約: 本稿では,Intelligent Engineering Assistant (IEA) の新しいフロントエンドとして開発された新しいAIエージェントベースの推論モジュール IEA-Plot を紹介する。
IEA-Plotの主な目的は、大規模言語モデル(LLM)の高度な推論とコーディング能力を活用することである。
- 参考スコア(独自算出の注目度): 6.375144316220065
- License:
- Abstract: This paper introduces IEA-plugin, a novel AI agent-based reasoning module developed as a new front-end for the Intelligent Engineering Assistant (IEA). The primary objective of IEA-plugin is to utilize the advanced reasoning and coding capabilities of Large Language Models (LLMs) to effectively address two critical practical challenges: capturing diverse engineering requirements and improving system scalability. Built on the LangGraph agentic programming platform, IEAplugin is specifically tailored for industrial deployment and integration with backend test data analytics tools. Compared to the previously developed IEA-Plot (introduced two years ago), IEA-plugin represents a significant advancement, capitalizing on recent breakthroughs in LLMs to deliver capabilities that were previously unattainable.
- Abstract(参考訳): 本稿では,Intelligent Engineering Assistant (IEA)の新しいフロントエンドとして開発された新しいAIエージェントベースの推論モジュールであるIEA-pluginを紹介する。
IEA-pluginの主な目的は、Large Language Models(LLM)の高度な推論とコーディング機能を利用することで、2つの重要な実践的課題に効果的に対処することである。
LangGraphのエージェントプログラミングプラットフォーム上に構築されたIEApluginは、特に産業展開とバックエンドのテストデータ分析ツールとの統合に適している。
以前開発されたIEA-Plot(2年前に導入された)と比較すると、IEA-pluginは、LLMの最近のブレークスルーに乗じて、これまで実現不可能だった機能を提供しようとしている。
関連論文リスト
- EdgeMark: An Automation and Benchmarking System for Embedded Artificial Intelligence Tools [0.0]
組み込みデバイスへの人工知能(AI)の統合は、エッジでインテリジェントなデータ処理を可能にすることで産業を変革している。
本稿では、既存のeAIツールのレビューを行い、それらの機能、トレードオフ、制限を強調します。
EdgeMarkは、組み込みプラットフォームに機械学習(ML)モデルをデプロイし、ベンチマークするためのベンチマークワークフローを合理化するように設計されたオープンソースの自動化システムです。
論文 参考訳(メタデータ) (2025-02-03T08:28:01Z) - Large Action Models: From Inception to Implementation [51.81485642442344]
大規模アクションモデル(LAM)は動的環境内でのアクション生成と実行のために設計されている。
LAMは、AIを受動的言語理解からアクティブなタスク完了に変換する可能性を秘めている。
創発から展開まで,LAMを体系的に開発するための総合的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-13T11:19:56Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - LAMBDA: A Large Model Based Data Agent [7.240586338370509]
本稿では,LArge Model Based Data Agent (LAMBDA)を紹介する。
LAMBDAは、複雑なデータ駆動アプリケーションにおけるデータ分析の課題に対処するように設計されている。
それは、人間と人工知能をシームレスに統合することで、データ分析パラダイムを強化する可能性がある。
論文 参考訳(メタデータ) (2024-07-24T06:26:36Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
次世代の多重入力多重出力(MIMO)はインテリジェントでスケーラブルであることが期待される。
本稿では、カスタマイズされた特殊コンテンツを生成することができる生成型AIエージェントの概念を提案する。
本稿では、生成AIエージェントをパフォーマンス分析に活用することの有効性を示す2つの説得力のあるケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-13T02:39:36Z) - EDALearn: A Comprehensive RTL-to-Signoff EDA Benchmark for Democratized
and Reproducible ML for EDA Research [5.093676641214663]
我々はEDALearnを紹介した。EDALearnは、EDAの機械学習タスクに特化した、最初の包括的なオープンソースベンチマークスイートである。
このベンチマークスイートは、合成から物理実装までのエンドツーエンドのフローを示し、さまざまなステージにわたるデータ収集を強化する。
私たちの貢献はML-EDAドメインのさらなる進歩を促進することを目的としています。
論文 参考訳(メタデータ) (2023-12-04T06:51:46Z) - ChatEDA: A Large Language Model Powered Autonomous Agent for EDA [6.858976599086164]
本稿では, LLM, AutoMage, EDAツールがエグゼクタとして機能するEDA用自律エージェントChatEDAを紹介する。
ChatEDAは、タスク分解、スクリプト生成、タスク実行を効果的に管理することで、登録-転送レベル(RTL)からグラフデータシステムバージョンII(GDSII)への設計フローを合理化する。
論文 参考訳(メタデータ) (2023-08-20T08:32:13Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
ヒューマン・インテリジェンス(HI)は、複雑なタスクを解くための基本的なスキルの組み合わせに長けている。
この機能は人工知能(AI)にとって不可欠であり、包括的なAIエージェントに組み込まれるべきである。
マルチステップで現実的なタスクを解決するために設計されたオープンソースのプラットフォームであるOpenAGIを紹介します。
論文 参考訳(メタデータ) (2023-04-10T03:55:35Z) - Developing an AI-enabled IIoT platform -- Lessons learned from early use
case validation [47.37985501848305]
本稿では,このプラットフォームの設計について紹介し,AIによる視覚的品質検査の実証者の観点からの早期評価について述べる。
これは、この初期の評価活動で学んだ洞察と教訓によって補完される。
論文 参考訳(メタデータ) (2022-07-10T18:51:12Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。