IEA-Plugin: An AI Agent Reasoner for Test Data Analytics
- URL: http://arxiv.org/abs/2504.11496v1
- Date: Mon, 14 Apr 2025 22:01:58 GMT
- Title: IEA-Plugin: An AI Agent Reasoner for Test Data Analytics
- Authors: Seoyeon Kim, Yu Su, Li-C. Wang,
- Abstract summary: This paper introduces IEA-Plot, a novel AI agent-based reasoning module developed as a new front-end for the Intelligent Engineering Assistant (IEA)<n>The primary objective of IEA-Plot is to utilize the advanced reasoning and coding capabilities of Large Language Models (LLMs)
- Score: 6.375144316220065
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces IEA-plugin, a novel AI agent-based reasoning module developed as a new front-end for the Intelligent Engineering Assistant (IEA). The primary objective of IEA-plugin is to utilize the advanced reasoning and coding capabilities of Large Language Models (LLMs) to effectively address two critical practical challenges: capturing diverse engineering requirements and improving system scalability. Built on the LangGraph agentic programming platform, IEAplugin is specifically tailored for industrial deployment and integration with backend test data analytics tools. Compared to the previously developed IEA-Plot (introduced two years ago), IEA-plugin represents a significant advancement, capitalizing on recent breakthroughs in LLMs to deliver capabilities that were previously unattainable.
Related papers
- EdgeMark: An Automation and Benchmarking System for Embedded Artificial Intelligence Tools [0.0]
The integration of artificial intelligence (AI) into embedded devices is transforming industries by enabling intelligent data processing at the edge.<n>This paper provides a review of existing eAI tools, highlighting their features, trade-offs, and limitations.<n>We also introduce EdgeMark, an open-source automation system designed to streamline the benchmarking workflow for deploying and benchmarking machine learning (ML) models on embedded platforms.
arXiv Detail & Related papers (2025-02-03T08:28:01Z) - Large Action Models: From Inception to Implementation [51.81485642442344]
Large Action Models (LAMs) are designed for action generation and execution within dynamic environments.<n>LAMs hold the potential to transform AI from passive language understanding to active task completion.<n>We present a comprehensive framework for developing LAMs, offering a systematic approach to their creation, from inception to deployment.
arXiv Detail & Related papers (2024-12-13T11:19:56Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - LAMBDA: A Large Model Based Data Agent [7.240586338370509]
We introduce LArge Model Based Data Agent (LAMBDA), a novel open-source, code-free multi-agent data analysis system.
LAMBDA is designed to address data analysis challenges in complex data-driven applications.
It has the potential to enhance data analysis paradigms by seamlessly integrating human and artificial intelligence.
arXiv Detail & Related papers (2024-07-24T06:26:36Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - EDALearn: A Comprehensive RTL-to-Signoff EDA Benchmark for Democratized
and Reproducible ML for EDA Research [5.093676641214663]
We introduce EDALearn, the first holistic, open-source benchmark suite specifically for Machine Learning tasks in EDA.
This benchmark suite presents an end-to-end flow from synthesis to physical implementation, enriching data collection across various stages.
Our contributions aim to encourage further advances in the ML-EDA domain.
arXiv Detail & Related papers (2023-12-04T06:51:46Z) - ChatEDA: A Large Language Model Powered Autonomous Agent for EDA [6.858976599086164]
This research paper introduces ChatEDA, an autonomous agent for EDA empowered by an LLM, AutoMage, and EDA tools serving as executors.
ChatEDA streamlines the design flow from the Register-Transfer Level (RTL) to the Graphic Data System Version II (GDSII) by effectively managing task decomposition, script generation, and task execution.
arXiv Detail & Related papers (2023-08-20T08:32:13Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z) - Developing an AI-enabled IIoT platform -- Lessons learned from early use
case validation [47.37985501848305]
We introduce the design of this platform and discuss an early evaluation in terms of a demonstrator for AI-enabled visual quality inspection.
This is complemented by insights and lessons learned during this early evaluation activity.
arXiv Detail & Related papers (2022-07-10T18:51:12Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.